(1993)11144: La3In TF=dac36000 118G 11K ( 3 vs 4 ) ASY 10:20:24 1-JUN-94Even though it generally has some structure to the information (<run number>: <run title> <signal prep> <time> <date>) that is just the format msrfit uses to output an updated guess file. There is no restriction on the format of the title line.
ParamNum ParamName InitialValue InitialUncertainty LowerBound UpperBound
The last parameter line must be followed by a blank line, and the blank line should usually be followed by a line stating "\-E" (to disable echoing):
1 AlphaLR 1.055451 .00173354 .2 5. 2 Phas -88.3943 .447291 -300. 300. 3 AsyLR .24321 .00137581 0. .38 4 Freq 1.599562 6.2994E-4 .4 3. 5 Sigma .12419 .00314248 0. 2. \-E (do not Echo indirect input to ASK.)
!====================== COMMENT for Last Run: ! 219, 324.89 = NDFR, CHISQ ! 10:22:24 1-JUN-94Any line that begins with an exclamation mark (!) is a comment line. Whereas the comments in the Comment Section are written by msrfit when it updates an input file, you may place your own comments anywhere in the file.
!====================== Name of TARGET "Initial Guess" File for RESULTS: OUTPUT MIN=11144.ITF
! -------------------- SIGNAL commands: SIGNAL 2, 3, 4, -5, 0 ! Phase Asymmetry Frequency Relaxation Hop/PowEach value is a pointer based on the parameter number for a fitting parameter, as tabulated at the top of the inital guess file. The fitting function is identified by an arcane system positive, negative, or zero pointer values with hundreds added. General principles of the encoding:
Details of the particular relaxation functions. | ||
---|---|---|
TF | +a, +b, +c, +d, 0 |
Precession with Exponential envelope |
+a, +b, +c, -d, 0 |
Precession with Gaussian envelope | |
+a, +b, +c, -d, +e |
Precession with Abragam (muon hopping) envelope | |
+a, +b, +c, +d, +e |
Precession with phenomenological ("stretched exponential") exponent-of-power exp(-{dt}e) envelope | |
ZF | 0, +b, 0, +d, 0 |
Simple exponential relaxation |
0, +b, 0, -d, 0 |
Static Gaussian ZF Kubo-Toyabe | |
0, +b, 0, -d, +e |
ZF Kubo-Toyabe with hopping; next line should supply filename of .TBL lookup table, either Gaussian (KDGZF.TBL) or Lorentzian (KDLZF.TBL). | |
0, +b, 0, +d, +e |
Phenomenological "stretched exponential" exp(-{dt}e) relaxation | |
0, +b, 0, -d, -e |
Generalized Zero-field Kubo Toyabe (ZF KT): (1/3) + (2/3)[1-{dt}e] exp(-[{dt}e]/e) Note: to get static Lorentzian ZF Kubo-Toyabe, Jess Brewer recommends Generalized ZF KT with e=1 fixed. | |
0, +b, -c, 0, 0 |
Incommensurate spin density wave function (bessel function) | |
+a, +b, 0, +d, -e |
Uemura thesis spin glass function with order
parameter Q given by parameter a and hop rate by e | |
LF | +a, +b, -c, -d, 0 |
Static LF Kubo-Toyabe, next line should supply filename of .TBL lookup table, either Gaussian (GLF.TBL) or Lorentzian (LLF.TBL). |
+a, +b, -c, -d, +e |
LF Kubo-Toyabe with hopping, next line should supply filename of .TBL lookup table, either Gaussian (KDGLF.TBL) or Lorentzian (KDLLF.TBL). | |
+a, +b, +c, . . . |
Any TF signal can be used for LF relaxation by providing parameters for
the phase (a ) and frequency (c ) whose values are fixed at zero (that's
the value, not the pointer).
|
100 < |a| < 115
, then the
parameter to be used in this slot is listed in the (|a|-100)
th slot of
the Spectrum line. This is useful when fitting a single model to a
bunch of spectra simultaneously ("global fits"), with some model parameters varying
from spectrum to spectrum, but other model parameters having unique
value for the whole set of spectra.
! --------------------- SPECTRUM commands: SPECTRUM 1, 0, 0, 0, 0, ! Alpha Beta RelPhase RelAsy L/T (indirect...)or for raw histogram spectra:
SPECTRUM -9, 10, 0, 8, -11, ! Norm Bkgd RelPha RelAsy T0Shift (indirect...)All entries in first 5 slots should be (usually positive) integers indicating the parameter number of the relevant fitting parameter in the list at the top of the file.
Alpha and Beta are parameters governing the assembly of the Asymmetry Histogram out of 2 histograms from an opposed pair of counters. Alpha is the "relative efficiency". Usually Beta, the "relative asymmetry" is left at its default value of unity. If Beta is not well approximated by unity, you are usually in analysis trouble.
A negative value for the Alpha entry indicates the spectrum is a raw histogram, and the first two parameters are Normalization (counts per ns) and fractional flat Background.
Relative Phase and Relative Asymmetry allow a distinction to be made between the detector geometry for a spectrum and the signal's precession phase. The Phase (Asymmetry) values of each signal are augmented by adding (multiplying) these relative values. This system facilitates multi-spectrum, multi-signal fits much better than using indirect parameters for all the signals.
L/T is life time, if different from the default value for a muon in vacuum. This is only used in negative muon spin relaxation. If the L/T pointer is negative, the parameter represents the shift in T0 for the spectrum (Lag Time instead of Life Time).
Any Spectrum parameter pointers greater than 200 indicate evaluated parameters, just as for Signal parameters described above.
The line following the Spectrum command, and following any expressions for evaluated parameters, must be the filename of the data file used to generate this spectrum.
011144.msr
Lines after the file name specify how the data histograms are used to calculate a spectrum for fitting:
SpectrumType
<Type> [ , <RRF freq>, <RRF bin> ]
HistNumbers
<num> [, <num> ...]
BackgroundBins
<first>, <last> [ repeat for each histogram ]
Times
<first>, <last>, <size>
Prev
The end of the commands to configure a particular spectrum is signalled by a blank line, after which there can be another Spectrum command or the end of all spectra. The end of spectra is also signalled by a blank line. Therefore, the end of the Spectrum section must have two blank lines:
SP 2 H 3,4 B 80,200,80,200 T .05,9,40Any text after the two blank lines are only used by a batch fit, and are ignored by the interactive-fit program:
! --------------------- MINUIT commands: MIGRAD MINOS END
(1993)11148: La3In TF=dac36000 118G FC 4.1K ( 3 vs 4 ) ASY 1 AlphaLR 1.037401 .00177851 .2 5. 2 Phas -84.8061 1.684704 -300. 300. 3 AsyLR .23 .0032481 0. .23 4 Freq .942987 .039401 .4 3. 5 Sigma 4.1858 .080712 1. 6. 6 AsyBK .045251 .00164983 0. .3 7 FrqBK 1.596713 .00249088 .4 3. 8 SigBK .145646 .0189731 0. .5 \-E (do not Echo indirect input to ASK.) !====================== COMMENT for Last Run: ! 290, 333.95 = NDFR, CHISQ ! 22:37:56 25-JUL-93 !====================== Name of TARGET "Initial Guess" File for RESULTS: OUTPUT MIN=11148.ITF2 ! -------------------- SIGNAL commands: SIGNAL 2, 3, 4, -5 SIGNAL 2, 6, 7, -8 ! --------------------- SPECTRUM commands: SPECTRUM 1 /musr/data/m13/1993/011148.msr SP 2 H 3,4 B 80,200,80,200 T .04,6,20 ! --------------------- MINUIT commands: FIX 2 MIGRAD MINOS END
At high fields, in rotating reference frame:
(1994)7255 TD38L aligned Tl-1212 3kG 5K 14:46:47 17-JAN-95 1 Phase -1.672379 .532623 -190. 190. 2 Asy1 .037514 7.8748E-4 0. .3 3 Frq1 42.0448 .0258043 0. 100. 4 Sigma1 3.43283 .098483 0. 10. 5 Asy2 .032213 2.1546E-4 0. .3 6 Frq2 42.3589 7.7438E-4 0. 100. 7 Sigma2 .144882 .0042957 0. 1. \-E (do not Echo indirect input to ASK.) !====================== COMMENT for Last Run: ! 591, 2130.4 = NDFR, CHISQ ! 14:46:49 17-JAN-95 !====================== Name of TARGET "Initial Guess" File for RESULTS: OUTPUT MIN=7255.I2RR ! --------------------- SIGNAL commands: SIGNAL 1, 2 ,3, -4 SIGNAL 1, 5 ,6, -7 ! --------------------- SPECTRUM commands: SPECTRUM 201 Alpha=1. /musr/data/m15/1994/007255.msr SP 4, RRF=40, .02 H 1,2,0,0 B 60,200,60,200, 60,200,60,200 T 0.,6 ! --------------------- MINUIT commands: !MIGRAD !END
When I want to test for static vs. dynamic local fields, I apply a sequence of LFs to see if the relaxation will "decouple". I fit all such LF spectra at a single temperature with a single global fit. A simple static case is:
(note the minus signs in front of the indirectly-mapped LFFreq parameter numbers on the Spectrum lines)
(1993)5256-7-8 UVa AlCuFe QC 1K ZF, 8G, 17G LF 1 Alpha .643258 .00116349 .2 3. 2 ASY .179766 9.0747E-4 0. .25 3 Delta .289526 .00173231 0. .5 4 HopR .053294 .00271449 0. 3. 5 ZERO 1.E-5 1.E-6 0. .001 6 LFF8 .121597 .00115867 0. .3 7 lff17 .223658 .00252321 0. .32 \-E (do not Echo indirect input to ASK.) !====================== COMMENT for Last Run: ! 104, 172.17 = NDFR, CHISQ ! 16:24:06 16-FEB-93 !====================== Name of TARGET "Initial Guess" File for RESULTS: OUTPUT MIN=ALCUFE1K.IGL ! --------------------- SIGNAL commands: SIGNAL 0, 2, -106, -3, 4 ! Pha Asy Frq Rlx Hop [DRN.UTIL.TBL]KDGLF.TBL ! --------------------- SPECTRUM commands: SPECTRUM 1, 0, 0, 0, 0, -5 ! Alp Bet RPh RAs L/T (indir...) /musr/data/m15/1993/005256.msr SP 2 H 1,2 B 76,236,76,236,76,236,76,236 T ,11,300 SPECTRUM 1, 0, 0, 0, 0, -6 ! Alp Bet RPh RAs L/T (indir...) /musr/data/m15/1993/005257.msr PREV spectrum 1, 0, 0, 0, 0, -7 ! alp bet rph ras l/t (indir...) /musr/data/m15/1993/005258.msr prev ! --------------------- MINUIT commands: MIGRAD END
On the other hand, the Al-Mn-Si quasicrystal exhibited much more complicated behavior. The following is for a temperature above the spin glass freezing, but not too far above (AsyIns and LamIns represent a small temperature- and field- and sample-independent signal which I concluded was instrumental (early bins, but I did not want to give them up entirely):
(1993) AlMnSi UVa T=10K ZF,41,100,300,800GLF FastRlx+(SGKT) 10:11:08 18-OCT-93 1 AlphUD .686 .00175163 .68 .69 2 AsyFas .042691 9.4488E-4 0. .19 3 RlxFLo .202535 .0078375 0. 1. 4 PwrFas .681561 .0080226 .499 2.01 5 AsyKT .147244 8.8483E-4 0. .19 6 ZERO 1.E-5 1.E-6 0. .001 7 RlxF300 .11738 .0078151 0. .8 8 RlxF800 .130227 .0070363 0. .6 \-E (do not Echo indirect input to ASK.) !====================== COMMENT for Last Run: ! 647, 762.06 = NDFR, CHISQ ! 10:11:10 18-OCT-93 !====================== Name of TARGET "Initial Guess" File for RESULTS: OUTPUT MIN=10KLF6.ID !===================================================== SIGNAL Parameters: SIGNAL 0, 2, 0, 107, 4 SIGNAL 0, 5, -106, -202 DelKT=0.352 [NOAKES.TBL]GLF.TBL SIGNAL 0, 203, 0, 204 AsyIns=.0227 LamIns=26. !===================================================== SPECTRUM Parameters: SPECTRUM 1,,,,,-6,3 /musr/data/m15/1993/005201.msr SP 2 H 1,2 B 80,230, 80,230 T ,.5, 5 SPECTRUM 1,,,,,-6,3 /musr/data/m15/1993/005201.msr SP 2 H 1,2 B 80,230, 80,230 T .49, 10., 300 SPECTRUM 1,,,,,-205,3 LFF41=0.5555 /musr/data/m15/1993/005203.msr SP 2 H 1,2 B 80,230, 80,230 T ,.5, 5 SPECTRUM 1,,,,,-206,3 LF41=0.5555 /musr/data/m15/1993/005203.msr SP 2 H 1,2 B 80,230, 80,230 T .49, 10., 300 SPECTRUM 1,,,,,-207,3 LFF100=1.355 /musr/data/m15/1993/005204.msr SP 2 H 1,2 B 80,230, 80,230 T ,.5, 5 SPECTRUM 1,,,,,-208,3 LF100=1.355 /musr/data/m15/1993/005204.msr SP 2 H 1,2 B 80,230, 80,230 T .49, 10., 300 SPECTRUM 1,,,,,-209,7 LFF300=4.065 /musr/data/m15/1993/005205.msr SP 2 H 1,2 B 80,230, 80,230 T ,.5, 5 SPECTRUM 1,,,,,-210,7 LF300=4.065 /musr/data/m15/1993/005205.msr SP 2 H 1,2 B 80,230, 80,230 T .49, 10., 300 SPECTRUM 1,,,,,-211,8 LFF800=10.84 /musr/data/m15/1993/005206.msr SP 2 H 1,2 B 80,230, 80,230 T ,.5, 5 SPECTRUM 1,,,,,-212,8 LF800=10.84 /musr/data/m15/1993/005206.msr SP 2 H 1,2 B 80,230, 80,230 T .49, 10., 300 !---------------------- MINUIT Commands follow: MIGRAD END
Remember the fluoride insulators? The initial guess file that first fit the ZF data involved a 3-frequency function that you wrote down plus an extra monotonic-relaxing signal:
CAF2ZF80: Tokyo CaF2 ZF 80K (5096+5097) Syd's Fcn + Xtra Mon16:38:36 3-APR-85 1 AlphaBF .967844 7.0944E-4 .2 5. 2 ASYM .0093516 1.2109E-4 0. .06 3 FRAC .57735 .001 .5 .6 4 DFRQ .195322 9.5996E-4 .01 1. 5 Rlx1 .143092 .0071282 0. 5. 6 Powr .50005 .050956 .5 2.2 7 PwrX 1.690186 .06783 .5 2.05 8 AsyX .032426 3.3427E-4 0. .1 9 RlxX .323251 .0085806 .01 8. \-E (do not Echo indirect input to ASK.) !====================== COMMENT for Last Run: ! 45, 62.015 = NDFR, CHISQ ! 16:41:25 3-APR-85 !====================== Name of TARGET "Initial Guess" File for RESULTS: OUTPUT MIN=CAF2SYD.ID !=================== SIG ,201,202,5,6 A1=(1.-FRAC)*ASYM FREQ1=0.732*DFRQ SIG ,2,203,5,6 FREQ2=2*DFRQ SIG ,204,205,5,6 A3=(1.+FRAC)*ASYM FREQ3=2.732*DFRQ SIG ,206,,5,6 A0=3.*ASYM SIG ,8,,9,7 !=================== SPEC 1 caf2zf80.msr S 2 H 1,2 B 8,18, 8,18 R 10,230, 10,230, T ,8.8, 160 !------------------- FIX 3 MIGRAD MINOS ,6 MINOS ,7 MINOS ,8 MINOS ,2 MINOS ,10 MINOS ,9 END