CAMP Programme r’s
Guide

Order Number: TRI-CD-96-??

April 1999

This document describes how to write Instrument drivers and client
applications for the CAMP (Control and Monitoring of Peripherals) system.

Revision/ Update Information : This manual has been revised for v1.3
Software Version: CAMP v1.3
Author: Ted Whidden

DAS Group, TRIUMF

TRIUMF, Vancouver , B.C.

Contents

PREFACE

CHAPTER 1 DEFINITIONS 1-1
CHAPTER 2 CLIENT APPLICATIONS 2-1
2.1 INTRODUCTION 2-1
2.2 ROUTINES 2-1
CHAPTER 3 COMMAND LINE INTERFACE 3-1
3.1 INVOKING 3-1
CHAPTER 4 INSTRUMENT DRIVERS 4-1
4.1 INTERPRETED SCRIPT DRIVERS 4-1
4.2 DEFINITION FILES 4-2
APPENDIX A CLIENT ROUTINES A-1

CAMP_CLNTEND()
CAMP_CLNTINIT()
CAMP_CLNTUPDATE()
CAMP_INSGETFILE()
CAMP_INSGETIFTYPEIDENT()
CAMP_INSGETLINE()
CAMP_INSGETLOCK()
CAMP_INSGETTYPEIDENT()
CAMP_PATHATTOP()
CAMP_PATHCOMPARE()
CAMP_PATHDOWN()
CAMP_PATHDOWNNEXT()

A-2
A-3
A-5
A-6
A7

A-10
A-11
A-12
A-13
A-14
A-15

Contents

CAMP_PATHGETFIRST()
CAMP_PATHGETLAST()
CAMP_PATHGETNEXT()
CAMP_PATHINIT()
CAMP_PATHUP()
CAMP_VARCHECKNUMTOL ()
CAMP_VAREXISTS()
CAMP_VARGETALARM ()
CAMP_VARGETLNK ()
CAMP_VARGETLOG ()
CAMP_VARGETNUM()
CAMP_VARGETP()
CAMP_VARGETPINS()
CAMP_VARGETPOLL ()
CAMP_VARGETSELID()
CAMP_VARGETSELIDLABEL ()
CAMP_VARGETSELLAB EL()
CAMP_VARGETSELLAB ELID()
CAMP_VARGETSTATS()
CAMP_VARGETSTATUS()
CAMP_VARGETSTR()
CAMP_VARGETTRUEP()
CAMP_VARGETVALSTR()
CAMP_VARNUMCALCSTATS()
CAMPSRV_CMD()
CAMPSRV_INSADD()
CAMPSRV_INSDEL()
CAMPSRV_INSIF()
CAMPSRV_INSIFREAD()
CAMPSRV_INSIFWRITE()
CAMPSRV_INSLINE()
CAMPSRV_INSLOAD()
CAMPSRV_INSLOCK ()
CAMPSRV_INSSAVE()
CAMPSRV_SYSDIR()
CAMPSRV_SYSGET()
CAMPSRV_SYSGETDYNA()
CAMPSRV_SYSLOAD()
CAMPSRV_SYSRUNDOWN()
CAMPSRV_SYSSAVE()
CAMPSRV_SYSUPDATE()
CAMPSRV_VARALARM ()
CAMPSRV_VARGET()
CAMPSRV_VARLOG ()
CAMPSRV_VARPOLL ()
CAMPSRV_VARREAD()
CAMPSRV_VARSETLNK ()
CAMPSRV_VARSETNUM()
CAMPSRV_VARSETNUMTOL()
CAMPSRV_VARSETSEL ()
CAMPSRV_VARSETSTR()
CAMPSRV_VARZERO()

A-16
A-17
A-18
A-20
A-21
A-22
A-23
A-24
A-25
A-26
A-27
A-28
A-29
A-30
A-31
A-32
A-34
A-35
A-37
A-39
A-40
A-41
A-42
A-43
A-45
A-46
A-48
A-49
A-50
A-52
A-54
A-56
A-58
A-60
A-62
A-63
A-64
A-65
A-67
A-68
A-70
A-71
A-73
A-T75
A-=TT7
A-T79
A-80
A-81
A-83
A-85
A-86
A-87

Contents

CAMP_FLOAT
CAMP_INSTRUMENT
CAMP_LINK
CAMP_INT
CAMP_SELECT
CAMP_STRING
CAMP_STRUCT
INSIFOFF

INSIFON

INSIFREAD
INSIFREADVERIFY
INSIFWRITE
INSIFWRITEVERIFY
SLEEP

VARDOSET

APPENDIX B CLI COMMAND FORMAT B-1
INSADD B-2
INSDEL B-3
INSGET B4
INSGETIFCAMAC . .. B-5
INSGETIFGPIB . . . B—6
INSGETIFRS232 . . . B-7
INSIF ... B-8
INSLOAD B-10
INSSAVE B-11
INSSET B-12
INSSET -IF GPIB B-13
INSSET -IF RS232 B-14
INSSET -IF CAMAC B-15
LNKGET ... B-16
LNKSET B-17
SYSADD . .. B-18
SYSDIR B-19
SYSGET ... B—20
SYSLOAD B-21
SYSREBOOT B-22
SYSSAVE B-23
SYSSHUTDOWN B-24
SYSUPDATE B—25
VARGET ... B—26
VARNUMGET . . . B-27
VARREAD B—28
VARSELGETVALLABEL B—29
VARSET B-30
VARTEST ... B-32

APPENDIX C DRIVER COMMANDS C-1

Contents

EXAMPLES
4-1 Sample Tcl Script Instrument Driver 4-3
4-2 Sample Instrument Driver Definitio n File 4-4
TABLES
2-1 Summary of client routines 2-1
A-1 Return values for campSrv_* routin es A-1
A-2 Flags used by campSrv_varGet () A-73

Vi

Preface

Intende d Audience

This manual is intended for programmers who will be writing instrument
drivers or client applications for CAMP.

Associa ted Documen ts
* The Operation Manual for MuSR at TRIUMF describes how to use the
CAMP online user interface.

Conventio ns

The following conventions are used in this manual:

Convention Meaning

Ctrl-x A sequence such as Ctrl-x indicates that you must hold down the
Ctrl key while you press another key or pointing device button.

[] Brackets indicate that whatever is enclosed is optional; you can
select none, one, or all of the choices.

{ Braces surround a required choice of options; you must choose one
of the options listed.

| The OR symbol separates alternatives within braces or brackets.

<> Angled brackets indicate that you should substitute a word or value.
Text within the brackets describes the appropriate substitution.

bold text Boldface text represents the introduction of new terms.

1

Definitions

1-1

2

2.1

2.2

Client Applications

Introduction

Each CAMP client keeps a local copy of the CAMP data structures that
have been requested. This includes a system section that contains general
information about the CAMP System, and a variable list which is a linked-
list of the data structures for every variable of every Instrument. The
CAMP API maintains these lists, that is, the allocating and updating of
the data is done through a high-level interface.

Routines

The routines available to client applications are organized into groups as
described in Table 2-1.

Table 2-1 Summary of client routines

Name Description

camp_cint* routines to maintain the client connection, etc.
camp_ins* routines for accessing the local Instrument data
camp_path* routines for maintaining CAMP paths

camp_var* routines for accessing the local Variable data
campSrv_* routines that make RPC requests to the CAMP Server

2-1

3

3.1

Command Line Interf ace

The CAMP Command Line Interface (CLI) is used to issue requests to the
CAMP Server. It is intended for debugging, for online user modifications
for and simple CAMP applications. Only a subset of the information stored
in the CAMP Server can be retrieved using the Command Line Interface.

Invoking

The CAMP Command Line Interface is executed with the command:
$ canmp_cnd [-node nodenarne] "command”

Where nodename is the optional Internet nodename of the CAMP Server
and command is a valid CAMP CLI command. See Appendix B for the
format of CAMP CLI commands. Note that command must be enclosed
within quotation marks, because CAMP commands are case-sensitive.

A

4.1

Instrument Drivers

CAMP Instrument Drivers are written as interpreted scripts in the Tcl
language. Script drivers are particularly useful because they necessitate
no rebuilding of the CAMP Server and have been implemented so as

to incur a minimal cost in speed. Script drivers also allow for rapid
development and modification.

Interpreted Script Drivers

The CAMP Server has an embedded interpreter, Tcl (pronounced ’tickle’),
which provides for the capability of script Instrument Drivers. The same
interpreter is used for the parsing of all CAMP commands, making script
drivers highly integrable with the CAMP Server. Tcl is a full interpreted
language that provides features such as: variables, dynamic arrays (called
lists), procedures, control flow, error messages, string manipulation, and
file I/0. Information on the Tcl language is available in books and on the
World Wide Web; start at http:/ /www.sco.com | Technology /[tcl | Tcl.html.

Script drivers consist of one file per driver, saved in (text) files named
camp:[drvJcamp_ins_*.tcl or /camp/drv/camp_ins_*.tcl which must
contain all of the information to define the variables and the the driver
functions.

The arrangement or hierarchy of the device commands and parameters
is represented in the form /~/variable or /~/structure/variable. Since
the unique identifier of the Instrument is not known in the Definition
file, the Instrument identifier is always replaced with the ~ character.
This character will be expanded properly when the file is parsed. The
arrangement is specified by the CAMP commands CAMP_INSTRUMENT
and CAMP_STRUCT, and the driver must begin with a CAMP_
INSTRUMENT command. These and all CAMP Driver commands are
defined in Appendix C.

Other Variable definition commands will follow the Instrument Variable
definition. If a Structure Variable is used, ensure that the Variables
that will be placed within the Structure are defined after the Structure
Variable. Other variables are defined with commands like CAMP_FLOAT
(numeric) and CAMP_SELECT (selection menu). These are all described
in Appendix C.

Besides CAMP Variables, a driver will often contain Tcl procedure
definitions, which are invoked by the CAMP Variables’ readProc,
writeProc, etc. These procedures should be named so as to not conflict
with procedures in other instrument definitions! Therefore "proc lake330_
set_curve" rather than "proc set_curve". Additionally, there is usually an
insSet command to set the default instrument interface parameters.

4.2

Instrume nt Drivers

A sample script driver file is shown in Example 4-1. In this example,

an instrument with four Variables is defined. The Instrument Variable
has minimal procedures onlineProc and offlineProc. The Variables have
procedures defined according to their read and set attributes. Note that a
procedure, lake622_read, is defined after the Variables which is called by
all of the readProc procedures. The Tcl interpreter stores this procedure
permanently when the file is first read (i.e., when the Instrument is
added). The procedure is not deleted when the Instrument is deleted

in case any other instances of the Instrument type exist, which would be
using the same copy of the procedure. Be careful that multiple instances of
the same Instrument type do not have Tcl variables. This can be avoided
by making the Tcl variable/procedure names unique to the instance of the
Instrument. These unique Tcl variables should then be explicitly deleted
when the Instrument is deleted to prevent memory leaks. Note also in the
example the use of a call to insSet to initialize the setting of the interface.

Tel drivers have been found to be robust, fast, simple, quick to write
and sophisticated. They have become the favoured method of writing
drivers and have thus replaced compiled drivers. The embedded aspect
of Tcl allows callable commands to be added very easily in the future.
If, however, this is not sufficient, compiled drivers may be written.
The system provides all of the necessary functionality for, and has
implemented, drivers written in DCL, but this has been found to be
highly inefficient and is not recommended.

Definition Files

The purpose of the Instrument Definition file is to define the Variable tree
of the Instrument if it has a compiled driver. Since Tcl script drivers are
used for everything, Definition Files are no longer used.

The file consists of lines of commands that are similar in format to other
CAMP commands. The format of the commands is given in Appendix C.

The filename must be of the form camp_ins_*.def. This file is installed in
the directory camp:.

The first command of the Definition file must be the definition of the
Instrument Variable. The Variables that follow will be below the
Instrument Variable in the path. Since the unique identifier of the
Instrument is not known in the Definition file, the Instrument identifier is
always replaced with the ~ character. This character will be expanded
properly when the file is parsed. Variable definition commands will
follow the Instrument Variable definition. If a Structure Variable is
used, ensure that the Variables that will be placed within the Structure
are defined after the Structure Variable. A sample Definition file is shown
in Example 4-2.

Instrumen t Drivers

Example 4-1 Sample Tcl Script Instrument Driver

CAMP_I NSTRUMENT /~ -D -T "LakeShore 622 MPS" \
-H "LakeShore 622 Magnet Power Supply" -d on \
-onlineProc { inslfOn /~} -offlineProc { insIfOFf /~ 1}
CAWP_FLOAT /~/i_out -D-R-P -L -A\
-T "Qutput current" \
-d on -r on -p_int 30\
-readProc {
| ake622_read /~/i_out "IOUT?" "9"

}
CAMP_FLOAT /~/ranmp_trgt -D-S -R-L -A\
-T "Ranp target current" \
-d on -s on -r on\
-readProc {
| ake622_read /~/ranp_trgt "RAMP?" "RAMPL, %f, 9%, %f"
} -writeProc {
set target [format "% 4f" $canp_target]
set rate [format "% 4f" [varGetVal /~/ranp_rate]]
inslIfWite /~ "RAWPL, O, $t arget, $rate”
varRead /~/ranp_trgt

}
CAMP_FLOAT /~/ranp_rate -D -S -R -L -A\
-T "Ramp rate (A/s)" \
-d on -s on -r on \
-readProc {
| ake622_read /~/ranp_rate "RAMP?" "RAMPL, %f, 9%f, %"
} -writeProc {
set rate [format "% 4f" $canp_target]
set target [format "% 4f" [varGetVal /~/ranp_trgt]]
insIfWite /~ "RAWPL, O, $t arget, $rate”
varRead /~/ranp_rate

}
CAMP_SELECT /~/ranmp_stat -D-S -R-P -L -A\
-T "Ranp status" -selections HOLDI NG RAMPI NG \
-d on -s on-r on-p_int 30\
-readProc {
| ake622_read /~/ranp_stat "RwW?" "o%d"
} -witeProc {
inslfWite /~ "RWP$canp_t arget"
var Read /~/ranp_st at

}
proc | ake622_read { path cmd fnt } {
set buf [inslfRead $path $cnd 32]
set status [scan $buf $fnt val]
if { $status !'=1} { return -code error
"failed parsing \"$buf\"" }
var DoSet $path -v $val
return -code ok $buf

}
insSet /~ -if_set rs232_tt 0.5 "undefined" 9600 7 odd 1\
CRLF CRLF 2 0O

Instrume nt Drivers

Example 4-2 Sample Instrument Driver Definiti on File

CAMP_| NSTRUMENT /~ -D -T "LakeShore 622 MPS" \
-H "LakeShore 622 Magnet Power Supply" -d on
CAMP_FLOAT /~/i_set -D-S -R-L -A\
-T "Qutput current setting" \
-d on -s on -r on -p_int 30
CAMP_FLOAT /~/i_out -D-R-P -L -A\
-T "Qutput current” -d on -r on -p_int 30
CAMP_STRUCT /~/ heat -D -d on
CAMP_INT /~/ heat/heat_set -D-S -R-L -A\
-T "Heater current setting (my)" \
-d on -s on -r on
CAMP_SELECT /~/ heat/heat _stat -D-S -R-P -L -A\
-T "Heater status" \
-d on -s on -r on -p_int 30 -selections OFF ON

A

Client Routines

All function names and associated arguments beginning with the "f_"
prefix are intended for FORTRAN compatibility.

The argument type boolean is equivalent to longword (unsigned) under
VAX/VMS.

The campSrv_* routines each make one RPC call to the CAMP Server. The
return values that these calls hold in common are listed in Table A—1.

Table A-1 Return values for campSrv_* routines

Name Description Cause

CAMP_FAIL_RPC RPC call failed Server has fallen off, or timeout due
to Server being slow or stuck.

camp_cintEnd ()

camp_c IntEnd ()—end CAMP connec tion

Finish being a CAMP client. See also camp_cintlinit.

FORMAT camp_cintEnd ()
f camp_cIntEnd ()

RETURNS None.

ARGUMENTS None.

DESCRIPTION The camp_clntEnd() function ends the CAMP client connection. The
function will free all memory allocated for data received from the CAMP
Server and the RPC client and authorization structures. A call to this
routine is necessary for each call to camp_clntInit().

¥
N

camp_clintlnit ()

camp_c Intinit ()—initialize CAMP connec tion

Initialize as a CAMP client. See also camp_cIntEnd

FORMAT status = camp_clntlnit (serverName, clientTimeout)
status =f_camp_clntinit (f_serverName,
f clientTimeout)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS serverName
type: ASCIZ string
access: read only
mechanism: by reference
The name of the host to connect to.

f _serverName

type: character string
access: read only
mechanism: by descriptor

clientT imeout

type: longword
access: read only
mechanism: by value
The timeout value for all calls to the server in seconds.

f_clientT imeout

type: longword
access: read only
mechanism: by reference

DESCRIPTION The camp_clntInit() function initializes the CAMP client connection.
The function will check for the existance of the hostname, then check
for the Server program on the host, and then get a copy of the CAMP
Server System Section. Be sure to call camp_clntEnd() to end the client
connection.

camp_clintlnit ()

RETURN
VALUES

CAMP_SUCCESS Normal successful completion.
CAMP_FAILURE Failed to initialize as client.
Any condition values returned by campSrv_sysGet().

camp_cintUpdate ()

camp_c IntUpdate ()—update CAMP data

Update the local copy of the CAMP data list.

FORMAT status = camp_clIntUpdate ()
status =f_camp_cIntUpdate ()

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS Nore.

DESCRIPTION The camp_clntUpdate() function updates the local copy of the CAMP
data. The routine first calls the Server for a small status structure. If the
Server’s system section has changed since the last update, the client will
request an update. Then, if any Instruments have been added or deleted
since the last call to camp_clntUpdate(), the complete variable list will be
updated. If the application never intends to receive a copy of the complete
variable list, or indeed the system section, then camp_clntUpdate() should
not be used. Instead, more specific calls to campSrv_varGet() should be
made.

RETURN
VALUES

CAMP_SUCCESS Normal successful completion.

Any condition values returned by campSrv_sysGetDyna(), campSrv_sysGet() or
campSrv_varGet().

camp_insGetFile ()

camp_IinsG etFile ()—get Instru ment initialization file
name

Get the local value of an Instrument initialization file name.

FORMAT status = camp_insGe tFile (path, filename)
status =f_camp_insGe tFile (f_path, f _filename)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Instrument.

f path

type: character string
access: read only
mechanism: by descriptor
filename

type: ASCIZ string
access: read only

mechanism: by reference
The full file path of the Instrument’s initialization file.

f filename
type: character string
access: read only

mechanism: by descriptor

DESCRIPTION The camp_insGetFile() routine returns the local value of the Instrument
initialization file name.

RETURN CAMP_SUCCESS N I ful leti
_ ormal successful completion.
VALUES . N
CAMP_INVAL_INS Invalid Instrument identifier. The Instrument does not
exist locally.

it
(o))

camp_insGetlfT ypeldent ()

camp_insG etlfTypelde nt()—get Instrumen t interf ace
type ident

Get the local value of an Instrument interface type identifier.

FORMAT status = camp_insGe tIfTypeldent (path, typeldent)
status =f_camp_insGe tlfTypeldent (f_path, f_typeldent
)
RETURNS type: longword (unsig ned)
access: write only

mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Instrument.

f path

type: character string
access: read only
mechanism: by descriptor
typeldent

type: ASCIZ string
access: read only

mechanism: by reference
The location to return the Instrument interface’s type identifier.

f typeldent
type: character string
access: read only

mechanism: by descriptor

DESCRIPTION The camp_insGetTypeldent() routine returns the local value of the
Instrument interface type identifier.

camp_insGetlfT ypeldent ()

RETURN CAMP_SUCCESS N I ful leti
. ormal successful completion.
VALUES _ N
CAMP_INVAL _INS Invalid Instrument identifier. The Instrument does not
exist locally.
CAMP_INVAL_IF Instrument interface is undefined.

camp_insG etLine ()

camp_insG etLine ()—get Instrument line status

Get the local value of an Instrument line status.

FORMAT status = camp_insGe tLine (path, pFlag)
status =f_camp_insGe tLine (f_path, pFlag)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Instrument.

f path

type: character string
access: read only
mechanism: by descriptor
pFlag

type: boolean
access: write only

mechanism: by reference
The location to put the status flag.

DESCRIPTION The camp_insGetLine() routine returns the local value of the Instrument
line status.

RETURN CAMP_SUCCESS N | ful leti
a ormal successful completion.
VALUES _ o
CAMP_INVAL_INS Invalid Instrument identifier. The Instrument does not
exist locally.

i
(o]

camp_insGetLock ()

camp_insG etLock ()—get Instrument lock status

Get the local value of an Instrument lock status.

FORMAT status = camp_insGe tLock (path, pFlag)
status =f_camp_insGe tLock (f_path, pFlag)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Instrument.

f path

type: character string
access: read only
mechanism: by descriptor
pFlag

type: boolean
access: write only

mechanism: by reference
The location to put the status flag.

DESCRIPTION The camp_insGetLock() routine returns the local value of the Instrument
lock status.

RETURN CAMP_SUCCESS N | ful leti
a ormal successful completion.
VALUES _ o
CAMP_INVAL_INS Invalid Instrument identifier. The Instrument does not
exist locally.

A-10

camp_insGetT ypeldent ()

camp_IinsG etTypelde nt()—get Instrument type ident

Get the local value of an Instrument type identifier.

FORMAT status = camp_insGe tTypeldent (path, typeldent)
status =f_camp_insGe tTypeldent (f_path, f_typeldent)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Instrument.

f path

type: character string
access: read only
mechanism: by descriptor
typeldent

type: ASCIZ string
access: read only

mechanism: by reference
The location to return the Instrument’s type identifier.

f typeldent
type: character string
access: read only

mechanism: by descriptor

DESCRIPTION The camp_insGetTypeldent() routine returns the local value of the
Instrument type identifier.

RETURN CAMP_SUCCESS N | ful leti
a ormal successful completion.
VALUES . o
CAMP_INVAL_INS Invalid Instrument identifier. The Instrument does not
exist locally.

A-11

camp_pathAtT op()

camp_pathAtT op()—test if path is at root

Test whether the specified path is at the root.

FORMAT status = camp_pathAtT op(path)
status =f_camp_pathAtT op(f_path)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path

type: ASCIZ string
access: read only
mechanism: by reference

A CAMP path.

f path

type: character string
access: read only

mechanism: by descriptor

DESCRIPTION The camp_pathAtTop() routine simply tests whether the given path is at
the root of the tree (i.e., is equal to "/").

RETURN
VALUES

False.
True.

A-12

camp_pathCompare ()

camp_pathCompare ()—compare two paths for
equality

Compare two CAMP paths for equality.

FORMAT status = camp_pathCompare (pathl, path2)
status =f_camp_pathCompare (f _pathl,f path2)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path

type: ASCIZ string
access: read only
mechanism: by reference

A CAMP path.

f path

type: character string
access: read only

mechanism: by descriptor

DESCRIPTION The camp_pathCompare() routine tests whether the given paths are equal.
It does this by expanding the paths (i.e., in case the default character "~"
has been used) and does a string comarison on the expanded strings.

RETURN
VALUES

False.
True.

A-13

camp_pathDown ()

camp_pathDown ()—navigate down a level

Navigate down a level of a path.

FORMAT path = camp_pathDow n(path, ident)
f camp_pathDown (f_path, f_ident)

RETURNS type: ASCIZ string

access: write only
mechanism: by reference

ARGUMENTS path

type: ASCIZ string
access: modify
mechanism: by reference
A CAMP path.

f path

type: character string
access: modify
mechanism: by descriptor
ident

type: ASCIZ string
access: read only

mechanism: by reference
The identifier to append to path.

f _ident
type: character string
access: read only

mechanism: by descriptor

DESCRIPTION The camp_pathDown() routine appends an identifier to path.

RETURN The pointer to path is returned.
VALUES

A-14

camp_pathDownN ext()

camp_pathDownNext ()—navigate down to the next
level

Navigate down to the next level of a path.

FORMAT path_curr = camp_pathDownN ext(path, path_curr)
f camp_pathDownN ext(f_path, f_path_curr)

RETURNS type: ASCIZ string

access: write only
mechanism: by reference

ARGUMENTS path

type: ASCIZ string
access: read only
mechanism: by reference
A CAMP path.

f path

type: character string
access: read only
mechanism: by descriptor
path_curr

type: ASCIZ string
access: modify

mechanism: by reference
A subpath of path. This path will be appended with the next identifier

from path.

f path_curr

type: character string
access: modify

mechanism: by descriptor

DESCRIPTION The camp_pathDownNext() routine appends the next identifier in path to
the subpath path_curr.

RETURN The pointer to path_curr is returned.
VALUES

A-15

camp_pathGetFirst ()

camp_pathGetFirst ()—get first path ident

Return the first identifier in the path.

FORMAT ident = camp_pathGetFirst (path, ident)
f camp_pathGetFirst (f_path, f_ident)

RETURNS type: ASCIZ string

access: write only
mechanism: by reference

ARGUMENTS path

type: ASCIZ string
access: read only
mechanism: by reference
A CAMP path.

f path

type: character string
access: read only
mechanism: by descriptor
ident

type: ASCIZ string
access: write only

mechanism: by reference
Location to return the first identifier in the path.

f ident
type: character string
access: write only

mechanism: by descriptor

DESCRIPTION The camp_pathGetfirst() routine returns the first identifier in the given
path.

RETURN The pointer to ident is returned.
VALUES

A-16

camp_pathGetLast ()

camp_pathGetLast()—get last path ident

Return the last identifier in the path.

FORMAT ident = camp_pathGetlLast (path, ident)
f camp_pathGetLast (f_path, f_ident)

RETURNS type: ASCIZ string

access: write only
mechanism: by reference

ARGUMENTS path

type: ASCIZ string
access: read only
mechanism: by reference
A CAMP path.

f path

type: character string
access: read only
mechanism: by descriptor
ident

type: ASCIZ string
access: write only

mechanism: by reference
Location to return the last identifier in the path.

f ident
type: character string
access: write only

mechanism: by descriptor

DESCRIPTION The camp_pathGetLast() routine returns the last identifier in the given
path.

RETURN The pointer to ident is returned.
VALUES

A-17

camp_pathGetNex t()

camp_pathGet Next()—get next path ident

Return the next identifier in the given path.

FORMAT ident = camp_pathGetNex t(path, path_sub, ident)
f camp_pathGetNe xt(f_path,f path_sub, f_ident)

RETURNS type: ASCIZ string

access: write only
mechanism: by reference

ARGUMENTS path

type: ASCIZ string
access: read only
mechanism: by reference
A CAMP path.

f path

type: character string
access: read only
mechanism: by descriptor
path_sub

type: ASCIZ string
access: read only

mechanism: by reference

A subpath of path. ident will be the next identifier in path after the
subpath path_sub.

f path_sub

type: character string
access: read only
mechanism: by descriptor
ident

type: ASCIZ string
access: write only

mechanism: by reference
Location to return the next identifier in the path.

f_ident
type: character string
access: write only

mechanism: by descriptor

A-18

camp_pathGetN ext()

DESCRIPTION The camp_pathGetNext() routine returns the next identifier in path which
follows the substring path_sub.

RETURN The pointer to ident is returned.
VALUES

A-19

camp_pathinit ()

camp_pa thinit ()—initialize a CAMP path

Initialize a CAMP path string.

FORMAT camp_pathinit (path)
f camp_pathinit (f_path)

RETURNS None.

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The destination string.

f path
type: character string
access: read only

mechanism: by descriptor

DESCRIPTION The camp_pathlnit() routine initializes a CAMP path string (namely to
"/H).

A-20

camp_pathUp ()—navigate up a level

Navigate up a level of a path.

FORMAT ident = camp_pathUp (path)
f camp_pathUp (f _path)

RETURNS type: ASCIZ string

access: write only
mechanism: by reference

ARGUMENTS path

type: ASCIZ string
access: modify
mechanism: by reference

A CAMP path.

f path

type: character string
access: modify

mechanism: by descriptor

DESCRIPTION The camp_pathUp() routine navigates path up one level.

RETURN The pointer to path is returned.
VALUES

A-21

camp_varCheck NumTol()

camp_v arCheckNumT ol()—check the tolerance of
Numeric

Check the tolerance constraints for a Numeric Variable's target value.

FORMAT status = camp_varChe ckNumT ol (path, target)
status =f_camp_varChe ckNumT ol (f_path, f_target)

RETURNS type: boolean

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f path

type: character string
access: read only
mechanism: by descriptor
target

type: D floatin g
access: read only

mechanism: by value
A given target value to be used to compare with the Variable’s current

value.

f target

type: D floatin g
access: read only

mechanism: by reference

DESCRIPTION The camp_varCheckNumTbol() routine compares target with the value of
the Numeric Variable. If either the comparison under the constraint of
percentage tolerance or minimum/maximum fails, then FALSE will be

returned.
RETURN The result of the comparison with target under the tolerance constraints is
VALUES returned as a boolean.

A-22

camp_varExists ()

camp_v arExists ()—test Variable exista nce

Test a Variable path for existance.

FORMAT status = camp_varExists (path)
status =f_camp_varExists (f_path)

RETURNS type: boolean

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f path
type: character string
access: read only

mechanism: by descriptor

DESCRIPTION The camp_varExists() routine tests the Variable for existance in the local
Variable list.

RETURN The result of the test for existance is returned as a boolean.
VALUES

A-23

camp_varGetAl arm()

camp_v arGetAlarm ()—get Variable alarm parameters

Get the local value of a Variable’s alarm parameters.

FORMAT status = camp_varGe tAlarm (path, pFlag, action)
status =f_camp_varGe tAlarm (f_path, pFlag, f_action)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f path

type: character string
access: read only
mechanism: by descriptor
pFlag

type: boolean
access: write only

mechanism: by reference
Location to return the alarm flag.

action
type: ASCIZ string
access: read only

mechanism: by reference
The returned value of the alarm action.

f action
type: character string
access: read only

mechanism: by descriptor

RETURN

CAMP_SUCCESS Normal successful completion.
VALUES - :
CAMP_INVAL_DATA Invalid path.

A-24

camp_varGetLnk ()

camp_v arGetLnk ()—get Link Variable value

Get the local value of a Link Variable’s target value.

FORMAT status = camp_varGe tLnk (path, val)
status =f_camp_varGe tLnk (f_path, f val)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f path
type: character string
access: read only

mechanism: by descriptor

val
type: ASCIZ string
access: read only

mechanism: by reference
Location to return the target value.

f val
type: character string
access: read only

mechanism: by descriptor

RETURN
VALUES

CAMP_SUCCESS Normal successful completion.
CAMP_INVAL_DATA Invalid path.

A-25

camp_varGetLog ()

camp_v arGetLog ()—get Variable logging parameters

Get the local value of a Variable’s logging parameters.

FORMAT status = camp_varGe tLog (path, pFlag, action)
status =f_camp_varGe tLog (f_path, pFlag, f_action)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f path

type: character string
access: read only
mechanism: by descriptor
pFlag

type: boolean
access: write only

mechanism: by reference
Location to return the logging flag.

action
type: ASCIZ string
access: read only

mechanism: by reference
The returned value of the logging action.

f action
type: character string
access: read only

mechanism: by descriptor

RETURN

CAMP_SUCCESS Normal successful completion.
VALUES - :
CAMP_INVAL_DATA Invalid path.

A-26

camp_varG etNum ()

camp_v arGetNum()—get Numeric Variable value

Get the local value of a Numeric Variable's target value.

FORMAT status = camp_varGe tNum (path, pVal)
status =f_camp_varGe tNum (f_path, pVval)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f path

type: character string
access: read only
mechanism: by descriptor
pVal

type: D floatin g
access: write only

mechanism: by reference
Location to return the target value.

RETURN
VALUES

CAMP_SUCCESS Normal successful completion.
CAMP_INVAL_DATA Invalid path.

A-27

camp_varGetp ()

camp_Vv arGetp()—qget Variable pointer

Get the pointer to a Variable’s data structure.

FORMAT pVar = camp_varGetp (path)
RETURNS type: CAMP_VAR structure
access: write only

mechanism: by reference

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

DESCRIPTION The camp_varGetp() routine returns the local value of the pointer to a
Variable’s data structure. This routine differs from camp_varGetTrueP()
in that it will attempt to return the effective Variable of Link Variable’s
and not the pointer to the Link Variable itself.

RETURN The pointer to the Variable’s data structure is returned. This value will
be NULL if path doesn’t exist locally. See Chapter 1 for definition of the
VALUES structure.

camp_va rGetplins ()

camp_v arGetplns ()—get Instrument pointer

Get the pointer to a Variable’s Instrument.

FORMAT plns = camp_varGetplns (pVar)
RETURNS type: CAMP_VAR structure
access: write only

mechanism: by reference

ARGUMENTS pVar
type: CAMP_VAR structure
access: read only
mechanism: by reference
The pointer to the Variable for which the Instrument pointer is desired.

DESCRIPTION The camp_varGetpIns() routine returns the local value of the pointer to a
Variable’s Instrument Variable.

RETURN The pointer to the Instrument Variable’s data structure is returned.
This value will be NULL if path doesn’t exist locally. See Chapter 1 for
VALUES definition of the structure.

A-29

camp_varGetPoll ()

camp_v arGetPoll ()—get Variable polling parameters

Get the local value of a Variable’s polling parameters.

FORMAT status = camp_varGe tPoll (path, pFlag, pinterval)
status =f_camp_varGe tPoll (f_path, pFlag, pinterval)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f path

type: character string
access: read only
mechanism: by descriptor
pFlag

type: boolean
access: write only

mechanism: by reference
Location to return the polling flag.

pinterval
type: F floating
access: write only

mechanism: by reference
Location to return the polling interval.

RETURN

CAMP_SUCCESS Normal successful completion.
VALUES :
CAMP_INVAL_DATA Invalid path.

A-30

camp_varGetSellD ()

camp_Vv arGetSellD()—get Selection Variable index
value

Get the local value of a Selection Variable's target value as an index.

FORMAT status = camp_varGe tSellD (path, pVal)
status =f_camp_varGe tSellD(f_path, pVval)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f path

type: character string
access: read only
mechanism: by descriptor
pVal

type: byte (unsigned)
access: read only

mechanism: by reference
Location to return the target value index.

RETURN
VALUES

CAMP_SUCCESS Normal successful completion.
CAMP_INVAL_DATA Invalid path.

camp_varGetSellD Label ()

camp_v arGetSellDLabel ()—get Selection Variable
label

Get a Selection Variable’s label for a given index.

FORMAT status = camp_varGe tSellDLabel (path, val, label)
status =f_camp_varGe tSellDLabel (f_path, f_val,
f label)
RETURNS type: longword (unsig ned)
access: write only

mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f path
type: character string
access: read only

mechanism: by descriptor

val
type: byte (unsigned)
access: read only

mechanism: by value
The index for which the label is desired.

f val

type: byte (unsigned)
access: read only
mechanism: by reference
label

type: ASCIZ string
access: read only

mechanism: by reference
The location to return the label.

f label
type: character string
access: read only

mechanism: by descriptor

A-32

camp_varG etSellDLabel ()

RETURN
VALUES

CAMP_SUCCESS Normal successful completion.
CAMP_INVAL_DATA Invalid path.

A-33

camp_varGetSelLabe [()

camp_v arGetSelLabel ()—get Selection Variable label
value

Get the local value of a Selection Variable’s target value as a label.

FORMAT status = camp_varGe tSelLabel (path, pVal)
status =f_camp_varGe tSelLabel (f_path, pVval)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f path
type: character string
access: read only

mechanism: by descriptor

val
type: ASCIZ string
access: read only

mechanism: by reference
Location to return the target value label.

f val
type: character string
access: read only

mechanism: by descriptor

RETURN

CAMP_SUCCESS Normal successful completion.
VALUES - .
CAMP_INVAL_DATA Invalid path.

A-34

camp_varG etSelLabellD ()

camp_v arGetSelLabellD ()—get Selection Variable
index

Get a Selection Variable’s index for a given label.

FORMAT status = camp_varGe tSelLabellD (path, label, pVval)
status =f_camp_varGe tSelLabellD (f_path, f_label,
pVal)
RETURNS type: longword (unsig ned)
access: write only

mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f path

type: character string
access: read only
mechanism: by descriptor
label

type: ASCIZ string
access: read only

mechanism: by reference
The label for which the index is desired.

f label

type: character string
access: read only
mechanism: by descriptor
pVal

type: byte (unsigned)
access: read only

mechanism: by reference
The location to return the index.

camp_varGetSelLabe IID()

RETURN
VALUES

CAMP_SUCCESS Normal successful completion.
CAMP_INVAL_DATA Invalid path.

A-36

camp_varGetStats ()

camp_Vv arGetStats ()—get Variable statis tics

Get the local value of a Variable’s statistics.

FORMAT status = camp_varGe tAlarm (path, pN, pLow, pHi,
pOffset, pSum, pSumSq,
pSumCub)

status =f_camp_varGe tAlarm (f_path, pN, pLow, pHi,
pOffset, pSum, pSumSq,
pSumCub)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f path

type: character string
access: read only
mechanism: by descriptor

pN

type: longword (unsig ned)
access: write only

mechanism: by reference
Location to return the number of readings.

pLow
type: D floatin g
access: write only

mechanism: by reference
Location to return the low value.

pHi
type: D floatin g
access: write only

mechanism: by reference
Location to return the high value.

camp_varGetStats ()

pOffset
type: D floatin g
access: write only

mechanism: by reference

Location to return the offset value. This offset is used in calculating the
sum, sum of squares, and sum of cubes, and must be considered when
using these values.

pSum
type: D floatin g
access: write only

mechanism: by reference
Location to return the sum.

pSumSq
type: D floatin g
access: write only

mechanism: by reference
Location to return the sum of squares.

pSumCub
type: D floatin g
access: write only

mechanism: by reference
Location to return the sum of cubes.

DESCRIPTION The camp_varGetStats() routine returns the statistics for a Numeric
Variable.

Note: The values for sum, sum of squares, and sum of cubes have an
incorporated offset. Use camp_varNumCalcStats() to calculate useful
statistics properly.

RETURN CAMP_SUCCESS N I ful leti
ormal successful completion.
VALUES - | P
CAMP_INVAL_DATA Invalid path.

A-38

camp_varGetStatus ()

camp_v arGetStatus ()—get Variable status

Get the local value of a Variable's status.

FORMAT status = camp_varGe tStatus (path, pStatus)
status =f_camp_varGe tStatus (f_path, pStatus)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f path

type: character string
access: read only
mechanism: by descriptor
pStatus

type: longword (unsig ned)
access: write only

mechanism: by reference
Location to return the status value.

RETURN
VALUES

CAMP_SUCCESS Normal successful completion.
CAMP_INVAL_DATA Invalid path.

camp_varGetStr ()

camp_v arGetStr()—qget String Variable value

Get the local value of a String Variable’s target value.

FORMAT status = camp_varGe tStr (path, val)
status =f_camp_varGe tStr (f_path, f val)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f path
type: character string
access: read only

mechanism: by descriptor

val
type: ASCIZ string
access: read only

mechanism: by reference
Location to return the target value.

f val
type: character string
access: read only

mechanism: by descriptor

RETURN

CAMP_SUCCESS Normal successful completion.
VALUES - .
CAMP_INVAL_DATA Invalid path.

camp_varGetT rueP ()

camp_v arGetTrueP ()—qget true Variable pointer

Get the pointer to a Variable’s true data structure.

FORMAT pVar = camp_varGetT rueP (path)
RETURNS type: CAMP_VAR structure
access: write only

mechanism: by reference

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

DESCRIPTION The camp varGetTrueP() routine returns the local value of the pointer
to a Variable’s data structure. This routine differs from camp_varGetp()
in that it return the pointer to Link Variables, and not the pointer to the
effective Variable.

RETURN The pointer to the Variable’s data structure is returned. This value will
be NULL if path doesn’t exist locally. See Chapter 1 for definition of the
VALUES structure.

camp_varGetV alStr ()

camp_v arGetValStr ()—get Variable value as a string

Get the local value of a Variable’s target value as a string.

FORMAT status = camp_varGe tValStr (path, val)
status =f_camp_varGe tValStr (f_path, f val)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f path
type: character string
access: read only

mechanism: by descriptor

val
type: ASCIZ string
access: read only

mechanism: by reference

Location to return the target value. The string will be formatted
accordingly for integer and floating-point types, and for Selection types
the integer index is converted to a string. For String types no conversion

is made.

f val

type: character string
access: read only

mechanism: by descriptor

RETURN
VALUES

CAMP_SUCCESS Normal successful completion.
CAMP_INVAL_DATA Invalid path.

camp_varNumCa IcStats ()

camp_v arNumCalcStats ()—calculate Variable
statistics

Calculate the statistics for a Numeric Variable.

FORMAT status = camp_varNumC alcStats (path, pMean,
pStdDev, pSkew)
status =f _camp_varNumC alcStats (f_path, pMean,
pStdDev, pSkew)

RETURNS type: boolean

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f_path

type: character string
access: read only
mechanism: by descriptor
pMean

type: D floatin g
access: read only

mechanism: by reference
Location to return the mean.

pStdDev
type: D floatin g
access: read only

mechanism: by reference
Location to return the standard deviation.

pSkew
type: D floatin g
access: read only

mechanism: by reference
Location to return the skewness.

camp_varNumCa IcStats ()

DESCRIPTION The camp_varNumCalcStats() routine calculates the statistics for a
Numeric Variable. The sum, sum of squares, and sum of cubes are kept
in the Variable’s data structure, but this routine is necessary to convert to
more useful numbers.

RETURN
VALUES

CAMP_SUCCESS Normal successful completion.
CAMP_INVAL_DATA Invalid path.

campSrv_cmd ()

campSrv_cmd ()—send CAMP command string

Sends a command string to the CAMP interpreter.

FORMAT status = campSrv_cmd (cmd)
status =f_campSrv_cmd (f_cmd)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS cmd
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f cmd
type: character string
access: read only

mechanism: by descriptor

DESCRIPTION The campSrv_cmd() routine sends a command string to be parsed by the
CAMP interpreter. This is equivalent to using the CAMP Command-line
Interface (see CAMP User Manual).

RETURN

CAMP_SUCCESS Normal successful completion.

VALUES . .
CAMP_FAILURE An error occurred while parsing the command.
Any return values shown in Table A-1.
Other possibilities may depend upon the command string.

A-45

campSrv_insAdd ()

campSrv_ insAdd ()—add an Instrume nt

Issues a request to the CAMP Server to add an Instrument.

FORMAT status = campSrv_insAdd (typeldent, ident)
status =f_campSrv_insAdd (f_typeldent, f_ident)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS typeldent
type: ASCIZ string
access: read only
mechanism: by reference
The identifier of a valid CAMP Instrument type.

f typeldent

type: character string
access: read only
mechanism: by descriptor
ident

type: ASCIZ string
access: read only

mechanism: by reference
A unique identifier for the Instrument. Can be a maximum of 15

characters.

f_ident

type: character string
access: read only

mechanism: by descriptor

DESCRIPTION The campSrv_insAdd() routine issues a request to the CAMP Server to
add a new Instrument. The operation will fail if the Instrument type is
invalid, or if the unique identifier already exists.

RETURN
VALUES

CAMP_SUCCESS Normal successful completion.
CAMP_INVAL_INS_TYPE Instrument type not known to CAMP.

A-46

campSrv_insAdd ()

CAMP_INVAL_INS Invalid Instrument identifier. Either there are invalid
characters or it already exists.

Any return values shown in Table A-1.

A-47

campSrv_insDel ()

campSrv_ insDel ()—delete an Instrume nt

Issues a request to the CAMP Server to delete an Instrument.

FORMAT status = campSrv_insDel (path)
status =f_campSrv_insDel (f_path)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Instrument.

f path
type: character string
access: read only

mechanism: by descriptor

DESCRIPTION The campSrv_insDel() routine issues a request to the CAMP Server to
delete an Instrument. The operation will fail if the Instrument path does
not exist, or if the Instrument is locked by a different process.

RETURN CAMP_SUCCESS N I ful leti
_ ormal successful completion.
VALUES _ N "
CAMP_INVAL_INS Invalid Instrument identifier. The specified Instrument
does not exist.
CAMP_INS_LOCKED Could not delete the Instrument because it is locked

by another process.
Any return values shown in Table A-1.

A48

campSrv_inslf ()

campSrv_ inslf ()—set an Instrume nt interf ace

Issues a request to the CAMP Server to set an Instrument interface.

FORMAT status = campSrv_inslf (path, typeldent, pSpec)
RETURNS type: longword (unsig ned)
access: write only

mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Instrument.

typeldent
type: ASCIZ string
access: read only

mechanism: by reference
The full path of the file to save.

pSpec
type: CAMP_IF_SPEC structure
access: read only

mechanism: by reference
The structure defining the new interface setting. See Chapter 1 for the
definition.

DESCRIPTION The campSrv_insIf() routine issues a request to the CAMP Server to set
an Instrument interface.

RETURN CAMP_SUCCESS N I ful leti
_ ormal successful completion.

VALUES _ N "

CAMP_INVAL_INS Invalid Instrument identifier. The specified Instrument
does not exist.

CAMP_INS_LOCKED The Instrument is locked by another process.
CAMP_CANT_SET_IF Can't set the interface while the Instrument is online.
CAMP_INVAL_IF_TYPE The requested interface type is undefined.

Any return values shown in Table A-1.

A-49

campSrv_inslfRead ()

campSrv_ inslfRead ()—read from the physic al
instrume nt

Instructs the CAMP Server to read data from the physical instrument.

FORMAT status = campSrv_insifRea d(path, cmd, cmd_len,
buf_len)
status =f_campSrv_insilfRea d(f_path, f cmd,
f cmd_len, f _buf _len)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Instrument.

f_path

type: character string
access: read only
mechanism: by descriptor
cmd

type: ASCIZ string
access: read only

mechanism: by reference
A string to send to the physical instrument to prompt for the readback.
Enclose this string within quotes if it contains any whitespaces.

f cmd

type: character string
access: read only
mechanism: by descriptor
cmd_len

type: longword (unsig ned)
access: read only

mechanism: by value
The length (in bytes) of cmd.

A-50

campSrv_inslfR ead()

f cmd_len

type: longword (unsig ned)
access: read only
mechanism: by reference

buf len

type: longword (unsig ned)
access: read only

mechanism: by value

The length (in bytes) of the buffer to be allocated for the data that will be
returned by the physical instrument. This value does not have to be the
exact length of the returned data, but must be large enough to hold the
data. It is recommended that one overestimate this value.

f buf len
type: longword (unsig ned)
access: read only

mechanism: by reference

DESCRIPTION The campSrv_insIfRead() routine instructs the CAMP Server to send a
command prompt to the physical instrument and then wait for data to be
sent from the instrument.

RETURN CAMP_SUCCESS N I ful leti

= ormal successful completion.

VALUES _ N "

CAMP_INVAL_INS Invalid Instrument identifier. The specified Instrument
does not exist.

CAMP_INVAL_INS_TYPE Instrument type not known to CAMP.

CAMP_INS_LOCKED The Instrument is locked by another process.

CAMP_INVAL_IF Instrument interface is undefined.

CAMP_INVAL_IF_TYPE The Instrument interface type is undefined.

CAMP_NOT_CONN Instrument interface is not online.

Any return values shown in Table A-1.
Other possibilities will depend upon the interface type.

campSrv_inslfW rite ()

campSrv_ inslfW rite ()—write to the physica |
instrumen t

Instructs the CAMP Server to write data to the physical instrument.

FORMAT status = campSrv_insIfW rite (path, cmd, cmd_len)
status =f_campSrv_insIfW rite (f_path, f cmd,
f cmd_len)
RETURNS type: longword (unsig ned)
access: write only

mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Instrument.

f path

type: character string
access: read only
mechanism: by descriptor
cmd

type: ASCIZ string
access: read only

mechanism: by reference

The string to be sent to the physical instrument. Enclose this string
within quotes if it contains any whitespaces.

f cmd

type: character string
access: read only
mechanism: by descriptor
cmd_len

type: longword (unsig ned)
access: read only

mechanism: by value
The length (in bytes) of cmd.

f cmd_len
type: longword (unsig ned)
access: read only

mechanism: by reference

A-52

campSrv_inslfW rite ()

DESCRIPTION The campSrv_insIfWrite() routine instructs the CAMP Server to send a
command string to the physical instrument.

RETURN CAMP_SUCCESS N I ful leti
_ ormal successful completion.

VALUES . N "

CAMP_INVAL_INS Invalid Instrument identifier. The specified Instrument
does not exist.

CAMP_INS_LOCKED The Instrument is locked by another process.
CAMP_INVAL_IF Instrument interface is undefined.
CAMP_INVAL_IF_TYPE The Instrument interface type is undefined.
CAMP_NOT_CONN Instrument interface is not online.

Any return values shown in Table A-1.
Other possibilities will depend upon the interface type.

campSrv_insLine ()

campSrv_ insLine ()—set the Instrument line

Issues a request to the CAMP Server to set an Instrument online or offline.

FORMAT status = campSrv_insLine (path, flag)
status =f_campSrv_insLine (f_path,f flag)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Instrument.

f path

type: character string
access: read only
mechanism: by descriptor
flag

type: boolean
access: read only

mechanism: by value
Set flag to FALSE for offline or TRUE for online.

f flag
type: boolean
access: read only

mechanism: by reference

DESCRIPTION The campSrv_insLine() routine issues a request to the CAMP Server to set
an Instrument online or offline. The operation will fail if the Instrument
is already locked by a different process or if the interface is undefined.

RETURN CAMP_SUCCESS N I ful leti
ormal successful completion.
VALUES - | o y
CAMP_INVAL_INS Invalid Instrument identifier. The specified Instrument
does not exist.
CAMP_INS_LOCKED The Instrument is locked by another process.

A-54

campSrv_insLine ()

CAMP_INVAL_IF The interface is undefined.
Any return values shown in Table A-1.

A-55

campSrv_insLoad ()

campSrv_insLoad ()—load an Instrumen t initialization

Issues a request to the CAMP Server to load an Instrument initialization.

FORMAT status = campSrv_insLoad (path, filename, flag)
status =f_campSrv_insLoad (f_path, f filename, f flag
)
RETURNS type: longword (unsig ned)
access: write only

mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Instrument.

f path

type: character string
access: read only
mechanism: by descriptor
filename

type: ASCIZ string
access: read only

mechanism: by reference
The full path of the file to load.

f _filename

type: character string
access: read only
mechanism: by descriptor

flag

type: longword (unsig ned)
access: read only
mechanism: by value

Not used.

f flag

type: longword (unsig ned)
access: read only

mechanism: by reference

A-56

campSrv_insLoad ()

DESCRIPTION

The campSrv_insLoad() routine issues a request to the CAMP Server
to load an Instrument initialization file. See CAMP User Manual for
information on the contents of these files.

RETURN
VALUES

CAMP_SUCCESS
CAMP_INVAL_INS

CAMP_INS_LOCKED
CAMP_INVAL_FILE
CAMP_FAILURE

Normal successful completion.

Invalid Instrument identifier. The specified Instrument
does not exist.

The Instrument is locked by another process.
Invalid filename.

There was an error while parsing the file.

Any return values shown in Table A-1.

campSrv_insLock ()

campSrv_ insLock ()—(un)lock an Instrument

Issues a request to the CAMP Server to (un)lock an Instrument.

FORMAT status = campSrv_insLock (path, flag)
status =f_campSrv_insLock (f _path,f flag)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Instrument.

f path

type: character string
access: read only
mechanism: by descriptor
flag

type: boolean
access: read only

mechanism: by value
Set flag to FALSE for unlock or TRUE for lock.

f flag
type: boolean
access: read only

mechanism: by reference

DESCRIPTION The campSrv_insLock() routine issues a request to the CAMP Server to
lock or unlock an Instrument. The operation will fail if the Instrument
is already locked by a different process or if the request is made from a
foreign host.

RETURN

CAMP_SUCCESS Normal successful completion.
VALUES -

CAMP_INVAL_INS Invalid Instrument identifier. The specified Instrument
does not exist.

A-58

campSrv_insLock ()

CAMP_INS_LOCKED The Instrument is locked by another process.
CAMP_INVAL_LOCKER The request was illegally made from a foreign host.
Any return values shown in Table A-1.

A-59

campSrv_insSave ()

campSrv_ insSave ()—save an Instrument
initialization

Issues a request to the CAMP Server to save an Instrument initialization.

FORMAT status = campSrv_insSave (path, flename, flag)
status =f_campSrv_insSave (f_path, f _filename, f _flag
)
RETURNS type: longword (unsig ned)
access: write only

mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Instrument.

f path

type: character string
access: read only
mechanism: by descriptor
filename

type: ASCIZ string
access: read only

mechanism: by reference
The full path of the file to save.

f filename

type: character string
access: read only
mechanism: by descriptor

flag

type: longword (unsig ned)
access: read only
mechanism: by value

Not used.

f flag

type: longword (unsig ned)
access: read only

mechanism: by reference

A-60

campSrv_insSave ()

DESCRIPTION The campSrv_insLoad() routine issues a request to the CAMP Server
to save an Instrument initialization file. See CAMP User Manual for
information on the contents of these files.

RETURN CAMP_SUCCESS N I ful leti
_ ormal successful completion.
VALUES _ o "
CAMP_INVAL_INS Invalid Instrument identifier. The specified Instrument
does not exist.
CAMP_INVAL_FILE Invalid filename.
CAMP_FAILURE There was an error while writing the file.

Any return values shown in Table A-1.

A-61

campSrv_sysDir ()

campSrv_ sysDir ()—do remot e dir

Requests the CAMP Server to get a directory listing on the Server host.

FORMAT status = campSrv_sysD ir(filespec)
status =f_campSrv_sysD ir(f_filespec)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS filespec
type: ASCIZ string
access: read only
mechanism: by reference
The file specification of the requested directory listing.

f filespec
type: character string
access: read only

mechanism: by descriptor

DESCRIPTION The campSrv_sysDir() routine requests the CAMP Server to perform a
directory listing using the filespec on the Server host and to then return
this listing. The listing is returned in the pDir pointer in the system
section (see Chapter 1).

RETURN | o
VALUES CAMP_SUCCESS Normal successful completion.

Any return values shown in Table A-1.

A-62

campSrv_sysG et()

campSrv_ sysG et()—get a copy of the system
section

Requests the CAMP Server for a copy of the system section.

FORMAT status = campSrv_sysG et()
status =f_campSrv_sysG et()

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS None.

DESCRIPTION The campSrv_sysGet() routine requests the CAMP Server for a complete
copy of the system section.

RETURN
VALUES

CAMP_SUCCESS Normal successful completion.

Any return values shown in Table A-1.

A-63

campSrv_sysGe tDyna ()

campSrv_ sysG etDyna ()—get a copy of the status
part of the system section

Requests the CAMP Server for a copy of the small status part of the system
section.

FORMAT status = campSrv_sysG etDyna()
status =f _campSrv_sysG etDyna()

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS None.

DESCRIPTION The campSrv_sysGetDyna() routine requests the CAMP Server for a copy
of the small status structure of the system section. This structure is used
to determine if an update of the local system section is necessary, and
when the last Instrument was added or deleted.

RETURN
VALUES

CAMP_SUCCESS Normal successful completion.
Any return values shown in Table A-1.

campSrv_sysLoad ()

campSrv_ sysLoa d()—load a configura tion

Issues a request to the CAMP Server to load a new configuration.

FORMAT status = campSrv_sysLoad (filename, flag)
status =f_campSrv_sysLoad (f_filename, f flag)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS filename
type: ASCIZ string
access: read only
mechanism: by reference
The full pathname of the file to load.

f filename

type: character string
access: read only
mechanism: by descriptor

flag

type: longword (unsig ned)
access: read only

mechanism: by value

If flag is 0 (zero), the configuration before loading a new configuration is
retained. This is the default. If flag is 1 (one), all current instruments are
deleted before loading the file. If any instruments are locked, the latter

will fail.

f flag

type: longword (unsig ned)
access: read only

mechanism: by reference

DESCRIPTION The campSrv_sysLoad() routine issues a request to the CAMP Server to
load a configuration file. As indicated in the parameters section, this may
either add to or replace the current configuration. See CAMP User Manual
for information on the contents of these files.

A—65

campSrv_sysLoad ()

RETURN CAMP_SUCCESS N I ful leti
. ormal successful completion.
VALUES
CAMP_INS _LOCKED Could not delete the current Instruments because
there is a locked Instrument.
CAMP_INVAL_FILE Could not find the specified file.
CAMP_FAILED Failure during the parsing of the file.

Any return values shown in Table A-1.

A—66

campSrv_sys Rundown ()

campSrv_ sysRundow n()—rundown CAMP Server

Issues a request to the CAMP Server to rundown.

FORMAT status = campSrv_sysR undown ()
status =f_campSrv_sysR undown ()

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS None.

DESCRIPTION The campSrv_sysRundown() routine issues a request to the CAMP Server
to rundown. The Server will first check to see that there are no locked
instruments. If there are none, the Server will exit cleanly.

RETURN CAMP_SUCCESS N I ful leti
ormal successful completion.
VALUES - P |
CAMP_INS_LOCKED Could not rundown because there is a locked
Instrument.

Any return values shown in Table A-1.

A-67

campSrv_sysSave ()

campSrv_ sysSav e()—save a configura tion

Issues a request to the CAMP Server to save the configuration.

FORMAT status = campSrv_sysSav e(filename, flag)
status =f_campSrv_sysSav e(f _filename, f flag)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS filename
type: ASCIZ string
access: read only
mechanism: by reference
The full pathname of the file to save.

f filename

type: character string
access: read only
mechanism: by descriptor

flag

type: longword (unsig ned)
access: read only
mechanism: by value

Not used.

f flag

type: longword (unsig ned)
access: read only

mechanism: by reference

DESCRIPTION The campSrv_sysSave() routine issues a request to the CAMP Server to
save the configuration to a file. See CAMP User Manual for information
on the contents of these files.

RETURN CAMP_SUCCESS N I ful leti
ormal successful completion.
VALUES - P
CAMP_INS_LOCKED Could not delete the current Instruments because
there is a locked Instrument.
CAMP_INVAL_FILE Could not find the specified file.

A—68

campSrv_sysSav e()

CAMP_FAILED Failure during the parsing of the file.
Any return values shown in Table A-1.

A-69

campSrv_sysUpdate ()

campSrv_ sysUpdat e()—updat e the CAMP Server

Issues a request to the CAMP Server to update its internal parameters.

FORMAT status = campSrv_sysU pdate ()
status =f_campSrv_sysU pdate ()

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS None.

DESCRIPTION The campSrv_sysUpdate() routine issues a request to the CAMP Server
to update its internal parameters which are initialized at startup. These
include the available:

* instrument types
¢ interface types
e alarm actions

* log actions

RETURN

CAMP_SUCCESS Normal successful completion.
VALUES - :
Any return values shown in Table A-1.

A-70

campSrv_varAlarm ()

campSrv_ varAlarm ()—set Variable alarm parameters

Requests the CAMP Server to set the Variable alarm parameters.

FORMAT status = campSrv_varAla rm(path, flag, action)
status =f_campSrv_varAla rm(f_path, f _flag, f _action)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f path

type: character string
access: read only
mechanism: by descriptor
flag

type: boolean
access: read only

mechanism: by value
Set flag to FALSE for off or TRUE for on.

f flag

type: boolean
access: read only
mechanism: by reference
action

type: ASCIZ string
access: read only

mechanism: by reference
A valid CAMP alarm action.

f action
type: character string
access: read only

mechanism: by descriptor

A-71

campSrv_varAlarm ()

DESCRIPTION The campSrv_varAlarm() routine requests the CAMP Server to set the
alarm parameters of a Variable.

RETURN CAMP_SUCCESS N I ful leti
_ ormal successful completion.
VALUES o . :
CAMP_INVAL_DATA Invalid Variable path. The specified Variable does not
exist.
CAMP_INS_LOCKED The Instrument is locked by another process.

CAMP_INVAL_DATA ATTR The Variable is not alarmable (does not have the
ALARM attribute).

Any return values shown in Table A-1.

A-T2

campSrv_varGet ()

campSrv_ varGet()—get CAMP Variable data

Get a copy of one or more CAMP Variables from the CAMP Server.

FORMAT status = campSrv_varGet (path, flag)
status =f_campSrv_varGet (f_path,f flag)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference

The CAMP path of the request. This might be the path below which
Variables are to be returned, or the specific Variable to be returned,
depending upon the value of flag.

f path

type: character string
access: read only
mechanism: by descriptor

flag

type: longword (unsig ned)
access: read only

mechanism: by value

flag can take on a value which is an ORed combination of the bits shown
in Table A-2. These flags are defined in camp_defs.h.

Table A-2 Flags used by campSrv_varGet ()

Flag Description

CAMP_ Just return the value of the parameters that may change. Ensure
XDR_ that this is NEVER

UPDATE

used the first time a Variable(s) is requested. The first request must be for a complete copy of the Variable. From
then on, it is recommended that this flag be set to reduce the overhead of the transfer.

CAMP_ Return only one Variable at the top of the specified path. If not set,
XDR _NO_ the Variables at the level of the specified path, which "come after" the
NEXT specified Variable, are sent. That is, the Variables in the linked-list

that follow, at the same level, the one specified. This flag is useful
when only one Variable (or one Variable and everything below it) is
desired.

A-73

campSrv_varGet ()

Table A-2 (Cont.) Flags used by campSrv_varGet ()

Flag Description

CAMP_ Do not return the Variables below the specified path. This flag is
XDR_NO_ useful when only one Variable is desired.

CHILD

CAMP_ Return only those Variables which are one level below the specified
XDR_ path.

CHILD _

LEVEL

f flag

type: longword (unsig ned)

access: read only

mechanism: by reference

DESCRIPTION

The campSrv_varGet() function is used to get copies of Variable data from
the CAMP Server. One Variable, all the Variables at the same level of
the path, or all the Variables below a specified path may be requested.
Furthermore, once a complete copy of a Variable(s) has been received,
further requests for the same Variable may specify that only parameters
that change are to be sent, for efficiency.

RETURN
VALUES

A-74

CAMP_SUCCESS Normal successful completion.
CAMP_INVAL_DATA Invalid path.
Any return values shown in Table A-1.

campSrv_varLog ()

campSrv_ varLog ()—set Variable logging parameters

Requests the CAMP Server to set the Variable logging parameters.

FORMAT status = campSrv_varLog (path, flag, action)
status =f_campSrv_varLog (f_path,f flag, f action)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f path

type: character string
access: read only
mechanism: by descriptor
flag

type: boolean
access: read only

mechanism: by value
Set flag to FALSE for off or TRUE for on.

f flag

type: boolean
access: read only
mechanism: by reference
action

type: ASCIZ string
access: read only

mechanism: by reference
A valid CAMP log action.

f action
type: character string
access: read only

mechanism: by descriptor

A-75

campSrv_varLog ()

DESCRIPTION The campSrv_varAlarm() routine requests the CAMP Server to set the
logging parameters of a Variable.

RETURN CAMP_SUCCESS N I ful leti
_ ormal successful completion.
VALUES o . :
CAMP_INVAL_DATA Invalid Variable path. The specified Variable does not
exist.
CAMP_INS_LOCKED The Instrument is locked by another process.
CAMP_INVAL_DATA ATTR The Variable is not logable (does not have the LOG
attribute).

Any return values shown in Table A-1.

A-T76

campSrv_varPoll ()

campSrv_ varPoll ()—set Variable polling parameters

Requests the CAMP Server to set the Variable polling parameters.

FORMAT status = campSrv_varPoll (path, flag, interval)
status =f_campSrv_varPoll (f_path, f flag, f _interval)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f path

type: character string
access: read only
mechanism: by descriptor
flag

type: boolean
access: read only

mechanism: by value
Set flag to FALSE for off or TRUE for on.

f flag

type: boolean
access: read only
mechanism: by reference
interval

type: F floating
access: read only

mechanism: by value
The polling interval in seconds.

f interval
type: F floating
access: read only

mechanism: by reference

A-T7

campSrv_varPoll ()

DESCRIPTION The campSrv_varPoll() routine requests the CAMP Server to set the
polling parameters of a Variable.

RETURN CAMP_SUCCESS N I ful leti
_ ormal successful completion.
VALUES o . :
CAMP_INVAL_DATA Invalid Variable path. The specified Variable does not
exist.
CAMP_INS_LOCKED The Instrument is locked by another process.
CAMP_INVAL_DATA ATTR The Variable is not pollable (does not have the POLL
attribute).

Any return values shown in Table A-1.

A-78

campSrv_varR ead()

campSrv_ varRead ()—read a Variable

Requests the CAMP Server to read a Variable.

FORMAT status = campSrv_varRea d(path)
status =f_campSrv_varRea d(f_path)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f path
type: character string
access: read only

mechanism: by descriptor

DESCRIPTION The campSrv_varRead() routine requests the CAMP Server to get a new
reading for a Variable.

RETURN CAMP_SUCCESS N I ful leti
B ormal successful completion.

VALUES o . :

CAMP_INVAL_DATA Invalid Variable path. The specified Variable does not
exist.

CAMP_INVAL_IF Instrument interface is undefined.
CAMP_INVAL_IF_TYPE The Instrument interface type is undefined.
CAMP_NOT_CONN Instrument interface is not online.

Any return values shown in Table A-1.
Other possibilities will depend upon the interface type and the Instrument type.

A-T79

campSrv_varSetLnk ()

campSrv_ varSetLnk ()—set a Link Variable

Requests the CAMP Server to set a Link Variable.

FORMAT status = campSrv_varSetLnk (path, val)
status =f_campSrv_varSetLnk (f_path,f val)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f path
type: character string
access: read only

mechanism: by descriptor

val
type: ASCIZ string
access: read only

mechanism: by reference
The target value of the Variable.

f val
type: character string
access: read only

mechanism: by descriptor

DESCRIPTION The campSrv_varSetLnk() routine requests the CAMP Server to set the
target value (i.e., the equivalent path) of a Link Variable.

RETURN < g SetNum()
VALUES ee camporv_varsetriNum().

A-80

campSrv_varSetNum ()

campSrv_ varSet Num()—set a Numeric Variable

Requests the CAMP Server to set a Numeric Variable.

FORMAT status = campSrv_varSetNum (path, val)
status =f_campSrv_varSetNum (f_path, f val)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f path
type: character string
access: read only

mechanism: by descriptor

val
type: D floatin g
access: read only

mechanism: by value
The target value of the Variable.

f val
type: D floatin g
access: read only

mechanism: by reference

DESCRIPTION The campSrv_varSetNum() routine requests the CAMP Server to set the
target value of a Numeric Variable.

RETURN CAMP_SUCCESS N I ful leti
_ ormal successful completion.
VALUES o " .
CAMP_INVAL_DATA Invalid Variable path. The specified Variable does not
exist.
CAMP_INS_LOCKED The Instrument is locked by another process.
CAMP_INVAL_IF Instrument interface is undefined.

A-81

campSrv_varSetNum ()

CAMP_INVAL_IF_TYPE The Instrument interface type is undefined.
CAMP_NOT_CONN Instrument interface is not online.

Any return values shown in Table A-1.

Other possibilities will depend upon the interface type and the Instrument type.

A-82

campSrv_varSetNumT ol()

campSrv_ varSetNumTol ()—set the toleran ce of a
Numeric Variable

Requests the CAMP Server to set the tolerance of a Numeric Variable.

FORMAT status = campSrv_varSetNumT ol (path, tol, min, max)
status =f_campSrv_varSetNumT ol(f_path, f_tol,
f min,f_max)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f path
type: character string
access: read only

mechanism: by descriptor

tol
type: F floating
access: read only

mechanism: by value
The percentage alarm tolerance.

f tol
type: F floating
access: read only

mechanism: by reference

min
type: D floatin g
access: read only

mechanism: by value
The alarm minimum.

f min
type: D floatin g
access: read only

mechanism: by reference

campSrv_varSetNumT ol()

max
type: D floatin g
access: read only

mechanism: by value
The alarm maximum.

f _max
type: D floatin g
access: read only

mechanism: by reference

DESCRIPTION The campSrv_varSetNumTol() routine requests the CAMP Server to set
the alarm tolerance values of a Numeric Variable. After setting the new
tolerances, the Server will also do the equivalent of a call to campSrv_
varSetNum() to ensure that the new tolerances are seen immediately by
the Instrument driver.

RETURN
VALUES

See campSrv_varSetNum().

A-84

campSrv_varSetSel ()

campSrv_ varSet Sel()—set a Selection Variable

Requests the CAMP Server to set a Selection Variable.

FORMAT status = campSrv_varSetSel (path, val)
status =f_campSrv_varSetSel (f_path,f val)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f path
type: character string
access: read only

mechanism: by descriptor

val
type: byte (unsigned)
access: read only

mechanism: by value
The target value of the Variable.

f val
type: byte (unsigned)
access: read only

mechanism: by reference

DESCRIPTION The campSrv_varSetSel() routine requests the CAMP Server to set the
target value of a Selection Variable.

RETURN < g SetNum()
VALUES ee camporv_varsetriNum().

A-85

campSrv_varSetStr ()

campSrv_ varSet Str()—set a String Variable

Requests the CAMP Server to set a String Variable.

FORMAT status = campSrv_varSetStr (path, val)
status =f_campSrv_varSetStr (f_path, f _val)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f path
type: character string
access: read only

mechanism: by descriptor

val
type: ASCIZ string
access: read only

mechanism: by reference
The target value of the Variable.

f val
type: character string
access: read only

mechanism: by descriptor

DESCRIPTION The campSrv_varSetStr() routine requests the CAMP Server to set the
target value of a String Variable.

RETURN < g SetNum()
VALUES ee camporv_varsetriNum().

A-86

campSrv_varZero ()

campSrv_ varZero()—zero Variable statis tics

Requests the CAMP Server to zero Variable statistics.

FORMAT status = campSrv_varZero (path)
status =f_campSrv_varZero (f _path)

RETURNS type: longword (unsig ned)

access: write only
mechanism: by value

ARGUMENTS path
type: ASCIZ string
access: read only
mechanism: by reference
The full CAMP path of the Variable.

f path
type: character string
access: read only

mechanism: by descriptor

DESCRIPTION The campSrv_varZero() routine requests the CAMP Server to zero
statistics of all Numeric Variables at or below the specified path.

RETURN CAMP_SUCCESS N I ful leti
_ ormal successful completion.
VALUES o " .
CAMP_INVAL_DATA Invalid Variable path. The specified Variable does not
exist.
CAMP_INS_LOCKED The Instrument is locked by another process.

Any return values shown in Table A-1.

A-87

B

CLI Command Format

Note:

This section describes the format of all(?) CAMP Command Line Interface
commands. These commands are issued by the user to the CAMP Server
using the CAMP Command Line Interface (see Chapter 3).

For all commands except sysGet ... , insGet ... , InkGet ... and

varGet . .. a status integer is returned. When issued from the Command
Line Interface this integer follows the VMS convention for status integers
(odd for success and even for failure). When issued from a Tcl script,

the status is either O (zero) for success and 1 (one) for failure. For the
commands sysGet . .. ,insGet ... ,InkGet ... and varGet ... , a string
is returned. When issued from the Command Line Interface this string is
printed to standard output and set to the global symbol "CAMP_RESULT".
When issued from a Tecl script, the string is returned as with all Tecl
procedures.

All command verbs, parameters, qualifiers and other strings in
the commands must be separated by whitespace and are case-
sensitive.

insAdd

INSAdd— add an Instru ment

Issues a request to the CAMP Server to add an Instrument.

FORMAT insAdd <typeldent> <ident>

PARAMETERS typeldent
The identifier of a valid CAMP Instrument type.

ident
A unique identifier for the Instrument. Can be a maximum of 15
characters.

DESCRIPTION The insAdd command issues a request to the CAMP Server to add a new
Instrument. The operation will fail if the Instrument type is invalid, or if
the unique identifier already exists.

¢
N

insDel

iInsDel— delete an Instrume nt

Issues a request to the CAMP Server to delete an Instrument.

FORMAT insDel <path>

PARAMETERS path
The unique CAMP path of the Instrument.

DESCRIPTION The insDel command issues a request to the CAMP Server to delete an
Instrument. The operation will fail if the Instrument path does not exist,
or if the Instrument is locked by a different process.

X
w

insGet

insGet ... —get Instrument informat ion

Requests the CAMP Server for an Instrument parameter.

FORMAT

insGetLockHos t <path>
insGetLockPid <path>
insGetDefFile <path>
insGetlniFile <path>
insGetDatai temsLen <path>
insGetT ypeldent <path>
insGetinstance <path>
insGetCla ss <path>
insGetlfStatus <path>
insGetlfT ypeldent <path>
insGetlfDelay <path>
insGetlf <path>

PARAMETERS path

The unique CAMP path of the Instrument.

DESCRIPTION

The insGet ... commands request the Server to return information
about an Instrument. See also insGetIfCamac ... , insGetIfGpib . .. and
insGetIfRs232 . . . for commands specific to interface types. The insGetlf
command returns a concatenation of all the interface parametetrs.

When issued from the CAMP Command-line Interface, the result is printed
to standard output and is set to the global symbol "CAMP_RESULT".
When issued from a Tel script the result is returned as a string in the
same way as all Tcl procedures.

insGetlfCamac

insGetlfCa mac ... —get Camac Instrume nt interfac e
information

Requests the CAMP Server for Instrument interface information specific to the
camac interface type.

FORMAT insGetlfCama cB <path>
insGetlfCama cC <path>
insGetlfCama cN <path>

PARAMETERS path
The unique CAMP path of the Instrument.

DESCRIPTION The insGetlfCamac ... commands request the Server to return
information (branch, crate, or number) about an Instrument interface
of type Camac.

When issued from the CAMP Command-line Interface, the result is printed
to standard output and is set to the global symbol "CAMP_RESULT".
When issued from a Tel script the result is returned as a string in the
same way as all Tcl procedures.

insGetlfGpib

insGetlfG pib ... —get gpib Instrume nt interf ace
iInformat ion

Requests the CAMP Server for Instrument interface information specific to the
gpib interface type.

FORMAT insGetlfGpibAddr <path>
insGetlfGpibRe adTerm <path>
insGetlfGpibW riteTerm <path>

PARAMETERS path
The unique CAMP path of the Instrument.

DESCRIPTION The insGetlfGpib ... commands request the Server to return information
about an Instrument interface of type gpib.

When issued from the CAMP Command-line Interface, the result is printed
to standard output and is set to the global symbol "CAMP_RESULT".
When issued from a Tcl script the result is returned as a string in the
same way as all Tcl procedures.

¢
(o))

insGetlfR s232 . ..

insGetlfRs 232 . .. —qget rs232 Instrumen t interf ace

iInformat ion

Requests the CAMP Server for Instrument interface information specific to the

rs232 interface type.

FORMAT

insGetlfRs2 32Name <path>
insGetlfRs2 32Baud <path>
insGetlfRs2 32Data <path>
insGetlfRs2 32Parity <path>
insGetlfRs2 32Stop <path>
insGetlfRs2 32ReadTerm <path>
insGetlfRs2 32WriteTerm <path>
insGetlfRs2 32Timeout <path>

PARAMETERS path

The unique CAMP path of the Instrument.

DESCRIPTION

The insGetlfRs232 ... commands request the Server to return
information about an Instrument interface of type rs232.

When issued from the CAMP Command-line Interface, the result is printed
to standard output and is set to the global symbol "CAMP_RESULT".
When issued from a Tcl script the result is returned as a string in the
same way as all Tcl procedures.

inslf ...

inslf ... —interact directly with an instrume nt

Requests the CAMP Server read from or write to an instrument or force
it on/off line. For details, see the corresponding Tcl driver commands in
Appendix C.

FORMAT

insIfOff <path>

insIfOn <path>

inslfRead <path> <r_cmd> <buf_len>

insIfReadV erify <path> <r_cmd> <buf_len> <var>
<fmt> <n_tries>

insIf\Write <path><w_cmd>

insIfW riteVerify <path><w_cmd> <r_cmd> <buf_len>
<var> <fmt> <n_tries> <val> <tol>

PARAMETERS

B-8

path

The unique CAMP path of the Instrument.

r cmd
A string that demands a response from an Instrument.

buf len
The size of the buffer needed to hold the response.

var
Path of variable which stores the result.

fmt

Tel format specifier for parsing response.

n_tries

Maximum number of retries.

w_command

String to write to Instrument.

val

Value to compare with response.

tol
Tolerance for accepting response as correct val.

inslf ...

DESCRIPTION

The insIf ... commands request the Server to give direct access to the
Instrument. For more detailed information on each of these commands,
see Appendix C.

When issued from the CAMP Command-line Interface, the result is printed
to standard output and is set to the global symbol "CAMP_RESULT".
When issued from a Tcl script the result is returned as a string in the
same way as all Tcl procedures.

B-9

insLoad

iInsLoad— load an Instrume nt initialization

Issues a request to the CAMP Server to load an Instrument initialization.

FORMAT insLoad <path> <filename>

PARAMETERS path
The unique CAMP path of the Instrument.

filename
The full path of the file to load.

DESCRIPTION The insLoad command issues a request to the CAMP Server to load an
Instrument initialization file.

insSave

iInsSave— save an Instrumen t initialization

Issues a request to the CAMP Server to save an Instrument initialization.

FORMAT insSave <path> <filename>

PARAMETERS path
The unique CAMP path of the Instrument.

filename
The full path of the file to load.

DESCRIPTION The insSave command issues a request to the CAMP Server to save an
Instrument initialization to a file.

B-11

insSet

INsSet— set an Instrument

Issues a request to the CAMP Server to set Instrument-specific parameters.

FORMAT

insSet <path>
[-lock {on | off}]
[-line {on | off}]
[-If <type> <delay> . ..]
[-if_mod <value>]

PARAMETERS path

The unique CAMP path of the Instrument.

OPTIONS -lock {on | off}
Requests that the calling process lock the Instrument for exclusive control.
-line {on | off}
Sets the Instrument’s interface to online or offline in software.
-if <type> <delay>
Defines the Intrument interface. Types are none, rs232, gpib, camac. For
a complete description of this command see insSet -if camac, insSet -if
rs232, and insSet -if gpib.
-if_mod <val>
Modifies the Instrument interface definition. For interfaces of type rs232,
val is the name of the port. For interfaces of type gpib, val is the GPIB
address of the port.

DESCRIPTION The insSet command issues a request to the CAMP Server to set

Instrument-specific parameters. This includes locking, setting the
interface on/offline, and setting the interface definition.

insSet -if gpib

insSet -if gpib

Issues a request to the CAMP Server to define an Instrument interface as
GPIB.

FORMAT insSet <path> -if gpib <delay> <addr> <term>

PARAMETERS path
The unique CAMP path of the Instrument.

delay

The access delay time in seconds. The CAMP Server ensures that at
least this amount of time has passed between consecutive accesses to the
physical device. Floating-point.

addr
The GPIB address. Integer.

term
A character to expect as end of input. Valid strings are: none, LF and CR.

insSet -if rs232

InsSet -if rs232

Issues a request to the CAMP Server to define an Instrument interface as
RS-232C.

FORMAT insSet <path> -if rs232 <delay> <name> <baud> <data
bits> <parity> <stop bits> <read term> <write
term> <read timeout> <retries>

PARAMETERS path
The unique CAMP path of the Instrument.

delay

The access delay time in seconds. The CAMP Server ensures that at
least this amount of time has passed between consecutive accesses to the
physical device. Floating-point.

name
The name of the port.

baud
The baud rate. Valid strings are: 300, 600, 1200, 2400, 4800, 9600 and
19200.

data bits
The number of data bits. Integer. Usually 7 or 8.

parity

The interface parity. Valid strings are: none, odd and even.

stop bits
The number of stop bits. Integer. Usually 1 or 2.

read terminator
Characters expected to terminate a read operation. Valid strings are:
none, LF, CR and CRLF.

write terminator
Characters to append to each write operation. Valid strings are: none, LF,
CR and CRLF.

read timeout

The timeout value for read operations. Integer in seconds.

retries

The number of times to retry a read operation after a failure. Integer.

insSet -if camac

InsSet -if camac

Issues a request to the CAMP Server to define an Instrument interface as
Camac.

FORMAT insSet <path> -if camac <delay> <branch> <crate>
<number>

PARAMETERS path
The unique CAMP path of the Instrument.

delay

The access delay time in seconds. The CAMP Server ensures that at
least this amount of time has passed between consecutive accesses to the
physical device. Floating-point.

branch
The Camac branch number. Integer, usually 0.

crate
The Camac crate number. Integer, usually O.

number

The slot number in the Camac crate.

B-15

InkGet

InkGet ... —get Link Variable information

Requests the CAMP Server for a Link Variable parameter.

FORMAT InkGetV arType <path>
InkGetPath <path>

PARAMETERS path
The unique CAMP path of the Instrument.

DESCRIPTION The lnkGet ... commands request the Server to return information about
a Link Variable.

When issued from the CAMP Command-line Interface, the result is printed
to standard output and is set to the global symbol "CAMP_RESULT".
When issued from a Tecl script the result is returned as a string in the
same way as all Tcl procedures.

InkSet

InkSet— set a Link Variable

Requests the CAMP Server to set the value of a Link Variable.

FORMAT InkSet <path> <val>

PARAMETERS path
The unique CAMP path of the Variable.

val
The path setting of the Link Variable. This is a effective path of the Link.

DESCRIPTION The [nkSet command issues a request to set the value of Link Variable.
After setting this Variable, all varSet and varRead commands referring
to the Link Variable’s path will effectively refer to the Variable pointed
to by the Link Variables’s value. This mechanism provides the means of
accessing the same Variable via multiple paths, much like a symbolic link
in the UNIX file system.

B-17

sysAdd

sysAdd ... —add to the syste m configur ation

Requests the CAMP Server to add something to the system definition.

FORMAT sysAddAIl armAct <ident> <proc>
sysAddLogAct <ident> <proc>
sysAddIfT ype <ident> <conf> <defaultDefn>
SsysAddInsT ype <ident>
sysAddInsA vail <type> <ident>
PARAMETERS ident
identifier of an action, interface, or instrument type
proc
procedure name, used to carry out an action
conf
configuration parameters
defaultDefn
default interface parameters
type
instrument type
DESCRIPTION The sysAdd ... commands request the Server to add to the system’s

internal database: An alarm action, log action, interface type, instrument
type, or instrument (of an existing type) available.

When issued from the CAMP Command Line Interface, the result is
printed to standard output and is set to the global symbol "CAMP_
RESULT" (under VMS). When issued from a Tel script the result is
returned as a string in the same way as all Tcl procedures.

sysDir

sysDir— perform director y listing

Issues a request to the CAMP Server to perform a directory listing and return
the listing.

FORMAT sysDir <filespec>

PARAMETERS filespec
The file specification of the listing.

DESCRIPTION The sysDir command issues a request to the CAMP Server to perform a
directory listing and return the listing. Note that the first item in the
list returned is the filespec that was requested. Be careful of the format
of the filespec - the command will be interpreted by the Tcl interpreter
in the CAMP Server. The character /[which is used in VMS directory
specifications, is special to Tcl. You must precede this character with a
backslash (\) in directory specifications.

sysGet

sysGet ... —get system informat ion

Requests the CAMP Server for system information.

FORMAT

sysGetA larmActs
sysGetD ir

sysGetlfC onf <ifType>
sysGetlfT ypes
sysGetinsT ypes
sysGetinsN ames
sysGetLogAc ts
sysGetLoggedV ars
sysGetA lertVars

DESCRIPTION

B-20

The sysGet ... commands request the Server to return information about
the system. Most commands return lists of data with each item delimited
by a space.

When issued from the CAMP Command Line Interface, the result is
printed to standard output and is set to the global symbol "CAMP_
RESULT" (under VMS). When issued from a Tcl script the result is
returned as a string in the same way as all Tcl procedures.

sysLoad

sysLoa d—load a configura tion

Issues a request to the CAMP Server to load a new configuration.

FORMAT sysLoad <filename> [<flag>]

PARAMETERS filename
The full pathname of the file to load.

flag

If flag is 0 (zero), the configuration before loading a new configuration is
retained. This is the default. If flag is 1 (one), all current instruments are
deleted before loading the file. If any instruments are locked, the latter
will fail.

DESCRIPTION The sysLoad command issues a request to the CAMP Server to load a
configuration file. As indicated in the parameters section, this may either
add to or replace the current configuration.

B-21

sysReboot

sysReboo t—reboot CAMP Server

Issues a request to the CAMP Server to restart.

FORMAT sysReboot

PARAMETERS None.

DESCRIPTION The sysReboot command issues a request to the CAMP Server to reboot.
The Server will first check to see that there are no locked instruments.
If there are none, the Server will exit cleanly and then restart. In the
current implementation, the VxWorks version of CAMP does not restart.

sysSave

sysSav e—save a configura tion

Issues a request to the CAMP Server to save the configuration.

FORMAT sysSave <filename>

PARAMETERS filename
The full pathname of the file to save.

DESCRIPTION The sysSave command issues a request to the CAMP Server to save the
configuration to a file.

sysShutdown

sysShut down— shutdown CAMP Server

Issues a request to the CAMP Server to shutdown.

FORMAT sysShutdown

PARAMETERS None.

DESCRIPTION The sysShutdown command issues a request to the CAMP Server to
shutdown. The Server will first check to see that there are no locked
instruments. If there are none, the Server will exit cleanly.

sysUpdate

sysUpdat e—update the CAMP Server

Issues a request to the CAMP Server to update its internal parameters.

FORMAT sysUpdate

PARAMETERS None.

DESCRIPTION The sysUpdate command issues a request to the CAMP Server to update
its internal parameters which are initialized at startup. These include the
available:

* instrument types
¢ interface types
e alarm actions

* log actions

varGet . ..

varGet ... —get Variable informa tion

Requests the CAMP Server for a Variable parameter.

FORMAT varGetldent <path>
varGetPath <path>
varGetVarType <path>
varGetAttributes <path>
varGetTitle <path>
varGetHelp <path>
varGetStatus <path>
varGetStatusMsg <path>
varGetT imeLastSet <path>
varGetPollinterval <path>
varGetLoglinterval <path>
varGetLogAction <path>
varGetAlarmA ction <path>
varGetVal <path>

PARAMETERS path
The unique CAMP path of the Variable.

DESCRIPTION The varGet ... commands request the Server to return information about
a Variable. See also varNumGet . . . for commands specific to Numeric
Variables.

When issued from the CAMP Command-line Interface, the result is printed
to standard output and is set to the global symbol "CAMP_RESULT".
When issued from a Tcl script the result is returned as a string in the
same way as all Tcl procedures.

varNumGet . ..

varNumGet

.. —get Numeric Variable informat ion

Requests the CAMP Server for information specific to Numeric Variables.

FORMAT

varNumGetT imeStarted <path>
varNumGetNum <path>
varNumGetLow <path>
varNumGetHi <path>
varNumGetSum <path>
varNumGetSumSquares <path>
varNumGetSumCubes <path>
varNumGetSumOffset <path>
varNumGetT ol <path>
varNumGetT olType <path>
varNumGetUni ts <path>

PARAMETERS path

The unique CAMP path of the Variable.

DESCRIPTION

The varNumGet ... commands request the Server to return information
specific to Numeric Variables, particularly their logging. Note that
varNumGetNum returns the number of times the Variable has been
read; use varGetVal to access the current value.

When issued from the CAMP Command-line Interface, the result is printed
to standard output and is set to the global symbol "CAMP_RESULT".
When issued from a Tcl script the result is returned as a string in the
same way as all Tel procedures.

B-27

varRead

varRead—read a Variable

Requests the CAMP Server to read a Variable.

FORMAT varRead <path>

PARAMETERS path
The unique CAMP path of the Variable.

DESCRIPTION The varRead command issues a request to get a new reading for a Variable
by executing the readProc for that Variable.

Note that varRead does not return the new value of the variable; use a
subsequent varGetVal for that.

varSelGetV alLabel

varSelGe tValLabe |—get Slection Variable value
string

Requests the CAMP Server for the selected label for a Selection Variable.

FORMAT varSelGetV alLabel <path>

PARAMETERS path
The unique CAMP path of the Variable.

DESCRIPTION The varSelGetValLabel command request the Server to return the value of
a Selection Variable as a string. Note that varGetVal returns the selection
value as an integer index.

When issued from the CAMP Command-line Interface, the result is printed
to standard output and is set to the global symbol "CAMP_RESULT".
When issued from a Tcl script the result is returned as a string in the
same way as all Tcl procedures.

varSet

varSet—set Variable parameters

Requests the CAMP Server to set a Variable.

FORMAT varSet <path>
[-a {on| off}]
[-a_act <alarm_act>]
[-1{on| off}]
[-]_act <log_act>]
[-p {on| off}]
[-p_int <poll_int>]
[-tol <tol>]
[-toltype <tolType>]
[-units <units>]
[-Z]

[-v <val>]

PARAMETERS path
The unique CAMP path of the Variable.

OPTIONS -a {on | off}

Set the Variable alarm status.

-a_act <alarm_act>

Set the Variable alarm action. alarm_act is a valid CAMP alarm action.

-| {on | of f}
Set the Variable logging status.

-|_act <log_act>
Set the Variable logging action. log_act is a valid CAMP log action.

-p {on | off}

Set the Variable polling status.

-p_int <poll_int>
Set the Variable polling interval. poll_int is the interval value as a
floating-point number in seconds.

-tol <tol>
Numeric Variables only. Set the alarm tolerance of a Variable.

varSet

-tolType <tolT ype>
Numeric Variables only. Set the method of tolerance checking. Possible
values for <tolType> are 0 for Plus/minus and 1 for Percent.

-units <units>
Set the units for a Variable. The specified units should be a short string.

-v <val>

Set the value of a Variable. The data type of val should correspond to the
type of the Variable, i.e. integer or floating-point for Numeric type, integer
for Selection type, and string for String type.

-Z
Zero the statistics of a Variable.

DESCRIPTION

The varSet command issues a request to set one or more of the parameters
for a CAMP Variable. If the value is to be set (-v) then the given value is
applied by executing the Instrument driver’s writeProc for the specified
variable. For other parameters, varSet is equivalent to varDoSet.

B-31

varTest ...

varTest ... —test variable against a value

Tests the current value of a Variable against a given value.

FORMAT varTestAlert <path><set point>
varTestTol <path><set point>

PARAMETERS path
The unique CAMP path of the Variable.

set_point
The value to test against. This value must be of the same data type as the
variable.

DESCRIPTION These commands issue a request to test the value of a variable to see if it
is within its tolerance limits of the specified set point. The return value
is 0 for out of tolerance and 1 for within tolerance. This is all varTestTol
does.

varTestAlert also tests the tolerance but, in addition, sets the alert
status of the variable and executes any "alarm action" associated with
the variable. CAMP variables with the -a (alarm) property should have
varTestAlert in their readProc.

C

Driver Commands

Note:

All of the CLI Commands (see CAMP User Manual) are relevant in

the context of a driver. Similarly, some of the driver commands are
available to the CLI interface. These driver commands should be listed

in Appendix B, but there are probably many omissions. Go ahead and try
these commands on the CLI if you need to. The declarative commands like
CAMP_INSTRUMENT can only be used in the driver (or in the defunct
definition files.)

All command verbs, parameters, qualifiers and other strings in
the commands must be separated by whitespace and are case-
sensitive.

The continuation character \ must be used if commands span
more than one line.

CAMP_FLOAT

CAMP_FLOAT—define a Numeric (Floating) Variable

Defines a Numeric (floating-point) Variable in a CAMP Instrument Driver.

FORMAT CAMP_FLOAT <path>
[-D1[-S] [-R] [-P] [-L] [-A]
[-T <title>]
[-H <help>]
[-readProc <read_proc>]
[-writeProc <write_proc>]
[-tol <tol>]
[-min <min>]
[-max <max>]
[-d {on | off}]
[-s {on| off}]
[-r {on | off}]
[-p {on | off}]
[-p_int <poll_int>]
[-/ {on] off}]
[-|_act <log_act>]
[-a {on | off}]
[-a_act <alarm_act>]
[-alert {on | off}]
[-Z]
[-m <msg>]
[-units <units>]
[-v <val>]

PARAMETERS path
The unique CAMP path of the Instrument. Note that in Definition files
the first identifier in the path is always "~". The parser will replace "~"
with the identifier of the current instance of the Instrument type.

OPTIONS -D
Set the Variable display

-S
Set the Variable setability attribute on.

CAMP_FLOAT

-R
Set the Variable readability attribute on.

P
Set the Variable polling attribute on. (A variable can be polled even if it is
not declared as readable.)

-L
Set the Variable logging attribute on.
-A

Set the Variable alarm attribute on.

-T <title>
Set the Variable title to title.

-H <help>
Set the Variable help to help.

-d {on | off}

Set the Variable display status.
-s {on | off}

Set the Variable setability status.

-r {on | off}
Set the Variable readability status.

-p {on | off}

Set the Variable polling status.

-p_int <poll_int>
Set the Variable polling interval. poll_int is the interval value as a
floating-point number in seconds.

-| {on | off}
Set the Variable logging status.

-|_act <log_act>
Set the Variable logging action. log_act is a valid CAMP log action.

-a{on | off}

Set the Variable alarm status.

-a_act <alarm_act>

Set the Variable alarm action. alarm_act is a valid CAMP alarm action.

-alert {on | off}

Set the Variable alert status. The command is used to alert the user that
a Variable is out of tolerance.

-Z
Zero the statistics of a Variable.

CAMP_FLOAT

-m <msg>
Set the message associated with a Variable.

-units <units>
Set the units of a Variable.

-v <val>

Set the value of a Variable. The data type of val should correspond to the
type of the Variable, i.e. integer or floating-point for Numeric type, integer
for Selection type, and string for String type.

-readProc <read_proc>

For Tel script drivers only. Set the read script to read_proc. This procedure
is executed upon each request to read the Variable. The procedure
normally consists of a call to insIfRead to read data from the physical
instrument followed by a call to varDoSet to set the value of the Variable.
See Section 4.1 for more information about Tcl.

-writeProc <write_proc>

For Tcl script drivers only. Set the write script to write_proc. This
procedure is executed upon each request to read the Variable. The
procedure normally consists of a call to insIfWrite to write data to the
physical instrument followed by a call to varDoSet to set the value of the
Variable. It is often possible to read the value back from the physical
instrument, before using varDoSet, to more accurately reflect the state of
the physical instrument. See Section 4.1 for more information about Tcl.

-tol <tol>
Set the alarm tolerance of a Variable.

-min <min>

Set the alarm minimum of a Variable.

-max <max>

Set the alarm maximum of a Variable.

DESCRIPTION

The CAMP_FLOAT command defines a Numeric Variable in a CAMP
Instrument Driver that is to be interpreted as a floating-point number.

CAMP_INSTRUMENT

CAMP_INSTRUMENT—define an Instrume nt Variable

Defines an Instrument Variable in a CAMP Instrument Driver.

FORMAT

CAMP_INSTRUMENT <path>
[-DI [-S] [-RI [-PT [-L] [-A]
[-T <title>]
[-H <help>]
[-insType <ins_type>]
[-initProc <init_proc>]
[-deleteProc <del_proc>]
[-onlineProc <on_proc>]
[-offlineProc <off _proc>]
[-d {on | off}]
[-s {on| off}]
[-r {on] off}]
[-p {on] off}]
[-p_int <poll_int>]
[-1 {on | off}]
[-|_act <log_act>]
[-a {on | off}]
[-a_act <alarm_act>]
[-alert {on | off}]
[-Z]
[-m <msg>]
[-v <val>]

PARAMETERS

ath
ghe unique CAMP path of the Instrument. For the CAMP INSTRUMENT
command this path is always set to "/~". The parser will replace "~"
with the identifier of the current instance of the Instrument type (i.e., the
same Instrument Definition file is used for multiple instances of the same
Instrument type).

See CAMP_FLOAT for most options. The following are specific to the
Instrument Variable type.

CAMP_INSTRUMENT

OPTIONS

-InsType <ins_type>

Set the Variable Instrument type to ins_type. This is only necessary if
the Instrument type name in the driver filename (i.e., the string following
camp_ins_) is not desired as the Instrument type name.

-InitProc <init_proc>

For Tel script drivers only. Set the initialization script to init_proc.

This procedure is executed when the Instrument is added. There are

no requisite tasks for this procedure. See Section 4.1 for more information
about Tecl.

-deleteProc <del proc>

For Tcl script drivers only. Set the deletion script to del_proc. This
procedure is executed when the Instrument is deleted. There are no
requisite tasks for this procedure. See Section 4.1 for more information
about Tecl.

-onlineProc <on_proc>

For Tecl script drivers only. Set the online script to on_proc. This procedure
is executed when the Instrument is set online. This procedure is required

and must make a call to insIfOn to set the Instrument interface status to

ONLINE. Otherwise, access to the physical instrument will not be allowed.
See Section 4.1 for more information about Tecl.

-offlineProc <off_proc>

For Tel script drivers only. Set the offline script to off_proc. This procedure
is executed when the Instrument is set offline. This procedure is required
and must make a call to insIfOff to set the Instrument interface status

to OFFLINE. Otherwise, access to the physical instrument will not be
disabled when this is requested. See Section 4.1 for more information
about Tcl.

DESCRIPTION

The CAMP_INSTRUMENT command defines an Instrument Variable in a
CAMP Instrument Driver. This must always be the first command in an
Instrument Definition file and can only be present once.

CAMP_LINK

CAMP_LINK—define a Link Variable

Defines a Link Variable in a CAMP Instrument Driver.

FORMAT CAMP_LINK <path>
[-D1 [-S] [-RI [-P] [-L] [-A]
[T <title>]
[-H <help>]
[-readProc <read_proc>]
[-writeProc <write_proc>]
[-d {on | off}]
[-s {on | off}]
[-r {on | off}]
[-p {on] off}]
[-p_int <poll_int>]
[-1 {on | off}]
[-|_act <log_act>]
[-a {on | off}]
[-a_act <alarm_act>]
[-alert {on | off}]
[-Z]
[-m <msg>]
[-v <val>]
[-varType <var_type>]

PARAMETERS path
The unique CAMP path of the Instrument. Note that in Definition files
the first identifier in the path is always "~". The parser will replace "~"
with the identifier of the current instance of the Instrument type.

See CAMP_FLOAT for most options. The following are specific to the
Selection Variable type.

OPTIONS -varType <var_type>
Set the Variable type of the Variable to be linked. var_type may be any one
of: CAMP_FLOAT, CAMP _INSTRUMENT, CAMP_INT, CAMP_SELECT,
CAMP _STRING, CAMP STRUCT.

DESCRIPTION The CAMP LINK command defines a Link Variable in a CAMP
Instrument Driver.

C-

~

CAMP_INT

CAMP_INT—define a Numeric (Integer) Variable

Defines a Numeric (integer) Variable in a CAMP Instrument Driver.

FORMAT CAMP_INT <path>
[-D1[-S] [-RI [-P] [-L] [-Al]
[-T <title>]
[-H <help>]
[-readProc <read_proc>]
[-writeProc <write_proc>]
[-tol <tol>]
[-min <min>]
[-max <max>]
[-d {on | off}]
[-s {on| off}]
[-r {on] off}]
[-p {on] off}]
[-p_int <poll_int>]
[-1 {on | off}]
[-|_act <log_act>]
[-a {on | off}]
[-a_act <alarm_act>]
[-alert {on | off}]
[-Z]
[-m <msg>]
[-units <units>]
[-v <val>]

PARAMETERS path
The unique CAMP path of the Instrument. Note that in Definition files
the first identifier in the path is always "~". The parser will replace "~"
with the identifier of the current instance of the Instrument type.

OPTIONS See CAMP_FLOAT.

DESCRIPTION The CAMP_INT command defines a Numeric Variable in a CAMP
Instrument Driver that is to be interpreted as an integer.

CAMP_SELECT

CAMP_SELECT—define a Selection Variable

Defines a Selection Variable in a CAMP Instrument Driver.

FORMAT

CAMP_SELECT <path>
[-D1[-S] [-R] [-P] [-L] [-A]
[-T <title>]
[-H <help>]
[-readProc <read_proc>]
[-writeProc <write_proc>]
[-selections <sel 0> [<sel 1> . . . <sel
n-1>]]
[-d {on | off}]
[-s {on | off}]
[-r {on | off}]
[-p {on] off}]
[-p_int <poll_int>]
[-| {on] off}]
[-|_act <log_act>]
[-a {on | off}]
[-a_act <alarm_act>]
[-alert {on | off}]
[-Z]
[-m <msg>]
[-units <units>]
[-v <val>]

PARAMETERS

path

The unique CAMP path of the Instrument. Note that in Definition files
the first identifier in the path is always "~". The parser will replace "~"
with the identifier of the current instance of the Instrument type.

See CAMP_FLOAT for most options. The following are specific to the
Selection Variable type.

OPTIONS

-selections <sel 0> [<sel 1> ... <sel n-1>]

Set the text labels of the Selection Variable. sel 0 through sel n-1 are the
text labels. Enclose a text label within quotation marks if it contains a
whitespace character.

CAMP_SELECT

DESCRIPTION The CAMP_SELECT command defines a Selection Variable in a CAMP
Instrument Driver.

C-10

CAMP_STRING

CAMP_STRING—define a String Variable

Defines a String Variable in a CAMP Instrument Driver.

FORMAT

CAMP_STRING <path>

[-D1 [-S] [-RI [-P] [-L] [-A]
[T <title>]

[-H <help>]

[-readProc <read_proc>]
[-writeProc <write_proc>]
[-d {on | off}]

[-s {on | off}]

[-r {on | off}]

[-p {on] off}]

[-p_int <poll_int>]

[-1 {on | off}]

[-|_act <log_act>]

[-a {on | off}]

[-a_act <alarm_act>]
[-alert {on | off}]

[-Z]

[-m <msg>]

[-units <units>]

[-v <val>]

PARAMETERS

The unique CAMP path of the Instrument. Note that in Definition files
the first identifier in the path is always "~". The parser will replace "~"
with the identifier of the current instance of the Instrument type.

OPTIONS

See CAMP_FLOAT.

DESCRIPTION

The CAMP_STRING command defines a String Variable in a CAMP
Instrument Driver.

c-1

CAMP_STRUCT

CAMP_STRUCT—define a Structure Variable

Defines a Structure Variable in a CAMP Instrument Driver.

FORMAT CAMP_STRUCT <path>
[-D]
[-T <title>]
[-H <help>]
[-d {on | off}]
[-Z]

[-m <msg>]

PARAMETERS path
The unique CAMP path of the Instrument. Note that in Definition files
the first identifier in the path is always "~". The parser will replace "~"
with the identifier of the current instance of the Instrument type.

OPTIONS See CAMP_FLOAT.

DESCRIPTION The CAMP STRUCT command defines a Structure Variable in a CAMP
Instrument Driver.

inslfOff

INsIfOff— set an interf ace offline

Instructs the CAMP Server to set an Instrument interface offline.

FORMAT insIfOff <path>

PARAMETERS path
The unique CAMP path of the Instrument.

DESCRIPTION This command instructs the CAMP Server to actually set an Instrument
interface offline.

C-13

inslfOn

InsIfOn— set an interfa ce online

Instructs the CAMP Server to set an Instrument interface online.

FORMAT insIfOn <path>

PARAMETERS path
The unique CAMP path of the Instrument.

DESCRIPTION This command instructs the CAMP Server to actually set an Instrument
interface online.

inslfRead

inslfRead— read from the physical instrume nt

Instructs the CAMP Server to write a command to the physical instrument,
and read the data returned by the instrument.

FORMAT inslfRead <path> <cmd> <buf_len>

PARAMETERS path
The unique CAMP path of the Instrument.

cmd
A string to send to the physical instrument to prompt for the readback.
Enclose this string within quotes if it contains any whitespaces.

buf_len

The length of the buffer to be allocated for the data that will be returned
by the physical instrument. This value does not have to be the exact
length of the returned data, but must be large enough to hold the data. It
is recommended that one overestimate this value.

RETURNS reading

The string returned by the instrument.

DESCRIPTION This command instructs the CAMP Server to send a command prompt
to the physical instrument and then read the response sent from the
instrument.

C-15

insIfReadV erify

inslfReadV erify—read from the physica | instrument
and set a camp variable according
to the result
Instructs the CAMP Server to write a command to the physical instrument,

and read the data returned by the instrument. This data is scanned by the Tcl
scan command, and that result is used to set a CAMP Variable.

FORMAT insIfReadV erify <path><cmd> <buf_len> <var> <fmt>
<tries>

PARAMETERS path
The unique CAMP path of the Instrument.

cmd

A string to send to the physical instrument to prompt for the readback.
Enclose this string within quotes if it contains any whitespaces.

buf_len

The length of the buffer to be allocated for the data that will be returned
by the physical instrument. This value does not have to be the exact
length of the returned data, but must be large enough to hold the data. It
is recommended that one overestimate this value.

var
The unique CAMP path of the Variable which is to receive the result.

fmt

A string used as the format specification for the Tel scan command to
extract the meaningful parameter from the instrument’s response string.
Enclose this string within quotes if it contains any whitespaces.

tries

If the instrument reading fails, or the scanning of the string fails, then the
read-and-scan are repeated as many as <tries> times.

RETURNS reading

The raw string returned by the instrument.

var
The specified Variable is set to a value extracted from the string.

insIfReadV erify

DESCRIPTION

This command instructs the CAMP Server to send a command prompt

to the physical instrument and then read the response sent from the
instrument. This string is scanned by the Tcl scan command using the
format string <fmt>. This format should extract a portion of the response
string which is used to set the CAMP variable <var>. If the scan operation
fails, the CAMP server retries, up to <tries> times, before quitting.

C-17

inslfW rite

insIfW rite—write to the physica | instrumen t

Instructs the CAMP Server to write data to the physical instrument.

FORMAT inslfWrite <path> <cmd>

PARAMETERS path
The unique CAMP path of the Instrument.

cmd
The string to be sent to the physical instrument. Enclose this string
within quotes if it contains any whitespaces.

DESCRIPTION This command instructs the CAMP Server to send a command string to
the physical instrument.

insIfW riteV erify

insIfW riteV erify— write to the physical instrument

and check the readback

Instructs the CAMP Server to write data to the physical instrument.

FORMAT

insIfW riteVerify <path><w_cmd> <r_cmd> <buf len>
<var> <fmt> <tries> <val> [<tol>]

PARAMETERS

path
The unique CAMP path of the Instrument.

w_cmd
The string written to the physical instrument, performing the ‘write’
operation.

r_cmd
The string written to the physical instrument to prompt for a readback.

buf_len
The length of the buffer to be allocated for the readback string. It should
be at least as large as the longest possible response string.

var
The unique CAMP path of the Variable which is to receive the readback
result.

fmt

A string used as the format specification for the Tel scan command to
extract the meaningful parameter from the instrument’s response string.

tries

If something fails in the write-prompt-read-scan sequence, the whole cycle
is repeated up to <tries> times.

val

The expected value for the readback parameter.

tol
The tolerance for comparing the readback with the specified <val>. If
omitted, it defaults to zero.

RETURNS

reading

The raw string returned by the instrument.

var
The specified Variable is set to a value extracted from the string, if it
matches the target value.

insIfW riteV erify

DESCRIPTION

C-20

This command instructs the CAMP Server to send a command string

to the physical instrument, then send another string to prompt for a
readback, and then read the response sent from the instrument. This
response string is scanned by the Tcl scan command using the format
string <fmt>. This format should extract a portion of the response string
to produce a result. If this result matches a specified target value, <val>
plus or minus <tol>, it is used to set the CAMP variable <var>. If anything
fails in this sequence, the CAMP server retries, up to <tries> times, before
quitting. If the optional <tol> is omitted, it is treated as zero, and if <var>
is a non-numeric Variable, the tolerance is ignored.

sleep

sleep—wait some time

Puts this procedure to sleep for a period of time.

FORMAT sleep <time>
[lock]

PARAMETERS time

The number of seconds to sleep; floating point.

lock
Forces all concurrent threads to sleep.

DESCRIPTION This command issues a request for the current procedure to be suspended
for <time> seconds. By default, the other threads (if multithreaded) are
allowed to proceed. Using the lock flag, however, turns the global lock on,
so that no other threads may execute while the current thread is sleeping.

CAUTION: turning the global lock on for long periods (i.e., several
seconds) causes unpredictable problems in both the VAX/VMS and
VxWorks camp servers.

varDoSet

varDoSet— set Variable parameters

Instructs the CAMP Server to set a Variable.

FORMAT varDoSet <path>
[-d {on | off}]
[-s {on| off}]
[-r {on | off}]
[-p {on] off}]
[-p_int <poll_int>]
[-1 {on | off}]
[-|_act <log_act>]
[-a {on | off}]
[-a_act <alarm_act>]
[-alert {on | off}]
[-Z]
[-m <msg>]
[-units <units>]
[-v <val>]

PARAMETERS path
The unique CAMP path of the Instrument.

OPTIONS -d {on | off}
Set the Variable display status.

-s {on | off}

Set the Variable setability status.

-r {on | off}

Set the Variable readability status.

-p {on | off}
Set the Variable polling status.
-p_int <poll_int>

Set the Variable polling interval. poll_int is the interval value as a
floating-point number in seconds.

-| {on | off}
Set the Variable logging status.

varDoSet

-|_act <log_act>
Set the Variable logging action. log_act is a valid CAMP log action.

-a {on | off}

Set the Variable alarm status.

-a_act <alarm_act>

Set the Variable alarm action. log_act is a valid CAMP alarm action.

-alert {on | off}

Set the Variable alert status. The command is used to alert the user that
a Variable is out of tolerance.

-Z
Zero the statistics of a Variable.

-m <msg>

Set the message associated with a Variable.

-units <units>
Set the units of a Variable.

-v <val>

Set the value of a Variable. The data type of val should correspond to the
type of the Variable, i.e. integer or floating-point for Numeric type, integer
for Selection type, and string for String type.

DESCRIPTION

This command issues a request to set one or more of the various CAMP
Variable parameters.

C-23

Driver Commands

Cc-24

