

Application of ultra-slow muons to g-2/EDM measurements

TRIUMF March 8, 2012

Tsutomu Mibe Institute of Particle and Nuclear studies, KEK

for the J-PARC muon g-2/EDM collaboration

Fundamental questions of subatomic physics in Canada

Perspectives on Subatomic Physics in Canada 2006-2016

> REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

The Subatomic Universe: Canada in the Age of Discovery

- What is the nature of new particles and physics beyond the Standard Model? Can a unified theory encompassing gravity and particles be developed?
- How do particles acquire mass? Does the <u>Higgs particle</u> exist and generate masses, or is new physics required?
- What is the nature of the <u>dark matter and dark energy</u> that comprise 95% of the Universe?
- What was the origin of the Universe? How is it evolving and what caused the asymmetry that led to a <u>Universe dominated by matter</u> rather than antimatter?
- What are the <u>masses of neutrinos</u>, and how have these particles shaped the evolution of the Universe?
- Can the theory of <u>quark and gluon confinement</u> quantitatively describe the detailed properties of hadrons?
- What mechanisms are responsible for the synthesis of heavy elements?

Fundamental questions of subatomic physics in Canada and the world

Perspectives on Subatomic Physics in Canada 2006-2016

> REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

The Subatomic Universe: Canada in the Age of Discovery

- What is the nature of new particles and physics beyond the Standard Model? Can a unified theory encompassing gravity and particles be developed?
- How do particles acquire mass? Does the <u>Higgs particle</u> exist and generate masses, or is new physics required?
- What is the nature of the <u>dark matter and dark energy</u> that comprise 95% of the Universe?
- What was the origin of the Universe? How is it evolving and what caused the asymmetry that led to a <u>Universe dominated by matter</u> rather than antimatter?
- What are the <u>masses of neutrinos</u>, and how have these particles shaped the evolution of the Universe?
- Can the theory of <u>quark and gluon confinement</u> quantitatively describe the detailed properties of hadrons?
- · What mechanisms are responsible for the synthesis of heavy elements?

Fundamental questions of subatomic physics in Canada

Perspectives on Subatomic Physics in Canada 2006-2016

> REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

The Subatomic Universe: Canada in the Age of Discovery

- What is the nature of new particles and physics beyond the Standard Model? Can a unified theory encompassing gravity and particles be developed?
- How do particles acquire mass? Does the <u>Higgs particle</u> exist and generate masses, or is new physics required?
- What is the nature of the <u>dark matter and dark energy</u> that comprise 95% of the Universe?
- What was the origin of the Universe? How is it evolving and what caused the asymmetry that led to a <u>Universe dominated by matter</u> rather than antimatter?
- What are the <u>masses of neutrinos</u>, and how have these particles shaped the evolution of the Universe?
- Can the theory of <u>quark and gluon confinement</u> quantitatively describe the detailed properties of hadrons?
- What mechanisms are responsible for the synthesis of heavy elements?

Muon being long-lived and self-analyzing particle offers an excellent research opportunities to attack fundamental questions

Particle dipole moments

Spin 1/2 particle in electro-magnetic field

$$\mathcal{H} = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$$

Magnetic dipole moment
$$\vec{\mu} = g\left(\frac{q}{2m}\right)\vec{s},$$

g = 2 from Dirac equation, in general $g \neq 2$ due to quantum-loop effects

Electric dipole moment (EDM) $\vec{d} = \eta \left(\frac{q}{2mc}\right) \vec{s}$

	$ec{E}$	\vec{B}	$ec{\mu} ~{ m or}~ ec{d}$	-
P	-	+	+	Under the CPT theorem
C	-	-	-	
T	+	-	-	\rightarrow CP violation 5

Lepton anomalous magnetic moment "g-2"

• Standard model can predict g-2 with ultra high precision

Lepton (l)	a_l	$\Delta a_l(exp)/a_l$	Δa_l (SM)/ a_l
electron muon tau	$\begin{array}{l} 115 \ 965 \ 218 \ 073(28) \times 10^{-14} \\ 116 \ 592 \ 080(63) \times 10^{-11} \\ < 2 \times 10^{-2} \end{array}$	0.24ppb 0.54ppm	4.5 ppb 0.41ppm

- Sensitivity of new physics (mass scale Λ) goes with $a_l(New physics) \sim (M_l/\Lambda)^2$
 - $(M_{\mu}/M_{e})^{2} = 43000$
 - $(M_{\tau}/M_{\mu})^2 = 300$
 - τ lepton : short life (0.3ps), limited statistics

Muon : higher sensitivity easier to produce

6

• Useful in searching for new particles and/or interactions

Super Symmetric particles

$$\left|a_{\mu}^{\mathrm{SUSY}}\right|\simeq 130 imes 10^{-11}\left(rac{100~\mathrm{GeV}}{\widetilde{m}}
ight)^{2} aneta,$$

Present uncertainty :
$$\Delta a_{\mu}(exp) = 63 \times 10^{-11}$$

History of muon g-2 measurements

Muon anomalous spin precession in B and E-field

- Muon spin rotates "ahead" of momentum due to g-2 >0.
- Precession frequency

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

- BNL E821
 - Focusing electric field to confine muons.
 - At the magic momentum

$$\gamma = 29.3, p = 3.094 \text{ GeV/c} \rightarrow (a_{\mu} - 1/(\gamma^2 - 1)) = 0$$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(\frac{a_{\mu}}{\gamma^2 - 1} \right) \frac{\vec{B} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{B} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

Safely be neglected with current upper limit on EDM

 \rightarrow Continuation of the experiment at FNAL is planned. 8

Our approach

Lower energy & Compact storage ring

BNL E821 / FNAL g-2

P= 3.1 GeV/c , B=1.45 T

J-PARC g-2

 $\mathsf{P}\text{=}~0.3~\mathsf{GeV/c}$, $\mathsf{B}\text{=}3.0~\mathsf{T}$

- Advantages
 - Suited for precision control of B-field
 - Example : MRI magnet , 1ppm local uniformity
 - Possibility of spin manipulation
 - Effective to cancel various systematics
 - <u>Completely different systematics than the BNL E821 or FNAL</u>

Our approach (cont') Zero Focusing Electric field (E = 0)

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1}\right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \right]$$
$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B}\right) \right]$$

Equations of spin motion is as simple as at the magic momentum

Need a beam which never spread out during measurement: Ultra-cold muon beam (p_T/p < 10⁻⁵) by accelerating ultra-slow muons from 3kV/c to 300 MeV/c

J-PARC Material and Life science Facility

Expected time spectrum of $\mu \rightarrow e^+ v \bar{v}$ decay

Muon spin precesses with time.

 \rightarrow number of high energy e⁺ changes with time by the frequency :

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]$$

15

Expected time spectrum of $\mu \rightarrow e^+ v \bar{v}$ decay

Collaboration (Contributors to CDR)

- 92 members (...still evolving)
- 25 Institutions: KEK, RIKEN, U-Tokyo, TRIUMF, BNL, PMCU, CYCRC-Tohoku, Osaka, Rikkyo, TITech, SUNYSB, RAL, UCR, UNM, Victoria
- 7 countries: Czech, USA, Russia, Japan, UK, Canada, France

Msaharu Aoki⁸, Pavel Bakule²⁰, Bernd Bassalleck²⁴, George Beer²⁶, Gerry Bunce²⁷, Abhay Deshpande¹⁹, Simon Eidelman⁴, Douglas E. Fields²⁴, Miloslav Finger⁶, Michael Finger Jr.⁶ Yuva Fujiwara^{17,14}, Yoshinori Fukao¹⁰, Noriyosu Hayashizaki¹⁶, Seiko Hirota^{10,14}, Hiromi Iinuma¹⁰, Masanori Ikegami¹⁰, Masahiro Ikeno¹⁰, Katsuhiko Ishida¹⁷, Masa Iwasaki¹⁷, Ryosuke Kadono¹⁰, Takuya Kakurai¹², Takuya Kamitani¹⁰, Yukihide Kamiya¹⁰, Sohtaro Kanda¹², Frédéric Kapusta⁵, Naritoshi Kawamura¹², Takashi Kohriki¹⁰, Sachio Komamiya¹⁴, Kunio Koseki¹⁰, Yoshitaka Kuno⁸, Alfredo Luccio¹², Oleg Luchev², Munevoshi Maki¹², Glen Marshall²², Mika Masuzawa¹⁰, Yasuyuki Matsuda⁹, Teijiro Matsuzaki¹⁷, Tsutomu Mibe¹⁰, Katsumi Midorikawa², Satoshi Mihara¹⁰, Yasuhiro Miyake¹⁰, William M. Morse³, Jiro Murata^{17,13}, Rvotaro Muto¹⁰, Kanetada Nagamine^{23,10,18}, Takashi Naito¹⁰, Hisayoshi Nakayama¹⁰, Megumi Naruki¹⁰. Makiko Nio²¹, Hajime Nishiguchi¹⁰, Daisuke Nomura¹⁰, Hiroyuki Noumi¹⁵, Tomoko Ogawa², Toru Ogitsu¹⁰, Kazuki. Ohishi¹⁷, Katsunobu Oide¹⁰, Masahiro Okamura³, Art Olin^{22,26} Norihito F. Saito², Naohito Saito^{10,14}, Yasuhiro Sakemi⁷, Ken-ichi Sasaki¹⁰, Osamu Sasaki¹⁰, Akira Sato¹², Aurore Savoy-Navaro⁵, Yannis K. Semertzidis³, Yuri Shatunov¹², Koichiro Shimomura¹⁰, Boris Shwartz⁴, Wilfrid da Silva²⁵, Patrick Strasser¹⁰, Ryuhei Sugahara¹⁰, Michinaka Sugano¹⁰, Ken-ichi Tanaka¹⁰, Manobu Tanaka¹⁰, Nobuhiro Terunuma¹⁰, Nobukazu Toge¹⁰, Dai Tomono¹⁷, Eiko Torikai¹², Toshiyuki Toshito¹¹, Akihisa Toyoda¹⁰, Kyo Tsukada¹², Tomohisa Uchida¹⁰, Kazuki Ueno¹⁷, Vlasov Vrba¹, Satoshi Wada², Akira Yamamoto¹⁰, Kaoru Yokoya¹⁰, Koji Yokoyama¹⁷, Makoto Yoshida¹⁰, Mitsuhiro Yoshida¹⁰, Koji Yoshimura¹⁰

The stage-1 approved in IMSS PAC, and stage-1 recommended in IPNS PAC. 7

Pointing power

- No focusing field $\rightarrow p_T/p < 10^{-5} @p=300 \text{ MeV/c}$
- Momentum
- $p_{T} < 3 \text{ keV/c}$ $p = (3/2)^{1/2}p_T < 3.7 \text{ keV/c}$ – Kinetic energy E < 0.065 eV

- Temperature T < 750 K (2000 K (hot-W)@RIKEN-RAL)

• This condition could be relaxed if very-weak focusing is applied (hot-W would be ok too).

Intensity

- Statistical uncertainty on $a_u = 0.1$ ppm (goal)
 - \rightarrow 10¹³ muons/year
 - \rightarrow 10⁶ ultra-slow muon /sec (25/sec @RIKEN-RAL)

Polarization

- Figure-of-Merit = NP^2
- 50 →100%

(50% @RIKEN-RAL)

Requirements:

40000 times more muons, and Cooler muon than RIKEN-RAL

Requirements:

40000 times more muons, and Cooler muon than RIKEN-RAL

170 times higher surface muon per spill at J-PARC H-line 2.4 x 10^4 /spill \rightarrow 400 x 10^4 /spill (25 spill/sec)

Requirements:

40000 times more muons, and Cooler muon than RIKEN-RAL

170 times higher surface muon per spill at J-PARC H-line 2.4 x 10^4 /spill \rightarrow 400 x 10^4 /spill (25 spill/sec)

Room-temperature muonium emitter

- Silica powders (SiO₂)
 - Structure : network of SiO₂ grain→ Large surface area.
 - Known to be a good Mu emitter at room temp.
 - Not self-standing \rightarrow difficulty in laser ionization.
- Silica aerogel
 - Similar structure of SiO₂ grain-network.
 - Self-standing!
 - Control of density and thickness
 - Only few (and old) data available
- Vacuum yield and space-time distributions with their density dependence were measured at TRIUMF.

Drift between SiO₂ grains

Material	Aerogel	Aerogel	Aerogel	Aerogel	Silica Plate
Density	27mg/cc	50mg/cc	99mg/cc	180mg/cc	2.2g/cc
Thickness	7.8mm	4.7mm	2.4mm	2.3mm	0.96mm

TRIUMF-S1249 group

Y. Fujiwara,^{*1,11} P. Bakule,^{*6} G. Beer,^{*12} D. Contreas,^{*12} M. Esashi,^{*7} Y. Fukao,^{*4} S. Hirota,^{*11} H. Iinuma,^{*4} K. Ishida,^{*1} M. Iwasaki,^{*1,8} T. Kakurai,^{*11} S. Kanda,^{*11} H. Kawai,^{*3} N. Kawamura,^{*4} G. Marshall,^{*2} H. Masuda,^{*9} Y. Matsuda,^{*10} T. Mibe,^{*4} Y. Miyake,^{*4} K. Ohishi,^{*1} H. Ohnishi,^{*1} A. Olin,^{*2} N. Saito,^{*4,11} K. Shimomura,^{*4} P. Strasser,^{*4} M. Tabata,^{*3,5} D. Tomono,^{*1} K. Tsukada,^{*1} K. Ueno,^{*1} K. Yokoyama,^{*1} S. Yoshida^{*7}

- *1 RIKEN Nishina Center, Japan
- *2 Canada's National Laboratory for Particle and Nuclear Physics (TRIUMF), Canada
- *³ Department of Physics, Chiba University, Japan
- *4 High Energy Accelerator Research Organization (KEK), Japan
- *5 Japan Aerospace Exploration Agency (JAXA), Japan
- *6 Institute of Physics, ASCR, v. v. i, Chezk
- *7 Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Japan
- *8 Department of Physics, Tokyo Institute of Technology, Japan
- *9 Division of Applied Chemistry, Tokyo Metropolitan University, Japan
- *10 College of Arts and Sciences, The University of Tokyo, Japan
- *11 Department of Physics, The University of Tokyo, Japan
- *12 Department of Physics, University of Victoria, Canada

TRIUMF-S1249 : search for muonium emitting material at room temp.

Goals are to examine materials at room temp.

- Muonium production rate
- > Muonium distribution in vacuum

Space-time distribution of Mu

Events 10³ = 0~0.5 µsec = 0.5~1 usec = 1~1.5 µsec Preliminar 10 10 Events t = 2.5~3 μsec = 1.5~2 μsec t = 2~2.5 µsec 10³ 10² 10 -10 10 20 30 40 -10 0 10 20 30 40 -10 0 10 20 30 40 z (mm) z (mm) z (mm) Distance from target surface Target surface

Reconstructed Mu decay vertex position

- Aerogel 27mg/cc
- Silica plate

- Silica plate data is used to estimate the background distribution.
- Enhancement in aerogel data is due to Mu emission in vacuum.
- Mu signals are observed in all aerogel densities.

Back of envelope estimate of efficiencies from surface to ultra-cold muons

	Beer, et al.	Woodle, et al.	S1249	Mills, et al.
	(89, TRIUMF)	(88, PSI)	(2011, TRIUMF)	(86, KEK-MSL)
	Silica Powder[4]	Silica Powder[11]	Silica Aerogel (S1249)	Hot $W[3]$
Momentum bite	3%(FWHM)	7.5%(FWHM?)	$2\%(\mathrm{RMS})$	5%(RMS)
(RMS)	1.3%/5% = 0.26	3.3%/5% = 0.66	2%/5% = 0.4	5%/5% = 1.
Straggling	$(20 { m MeV}/28 { m MeV})^{3.5}$	$(20 { m MeV}/28 { m MeV})^{3.5}$	$(23 { m MeV}/28 { m MeV})^{3.5}$	$(23.2 { m MeV}/28 { m MeV})^{3.5}$
	= 0.31	= 0.31	= 0.50	= 0.52
Half-stop	0.5	0.5	0.5	0.5
Mu formation	0.6	0.6	0.6	-
(total emission)/	0.19	0.33	0.016	0.04
(Mu in target)			Prelimina	
(Mu in laser region)	0.30	0.30	0.30 0.30	0.22
/(total emission)				
Ionization efficiency	0.76	0.76	0.76	0.54
Product of efficiencies	0.1E-2	0.46E-2	0.02E-2	0.12E-2
Expected Ultra-Cold	0.1E6	0.46E6	0.02E6	0.12E6
Muon Yield (/s)				

Required yield : 1.E+6/s a factor of 8 behind ?

Prospects on Mu target developments

- Aerogels
 - Squeeze as much information as possible from S1249 data
 - Density dependence, space-time distributions etc...

• More surface area

- Porous structure?
 - New PSI work on meso-porous Silica (arXiv:1112.4887)
- Micro-drilled W-foil
 - 10µm-pitch drilled foil was tried at RIKEN-RAL
 - Started R&D for 1µm pitch for further gain

Surface processing

- W coated with alkali-metal (Na, Cs)
 - Experiment being performed at J-PARC now by Y. Miyake, Y.Nagashima et al.
- Complex geometry
 - Cyclotron trap
 - Slanted layer
 - Multi-layers
 - Cylinder ...
 - Monte Carlo simulations have been in progress.

Laser development and ionization test

- Laser development at RIKEN
 - Omega-1
 - Fiber Laser System
 - Solid State Amplifier
 - Non-linear frequency converter
 - Omega-2
 - SLM Seeder
 - 1st and 2nd Non-linear amplification
 - 2-photon resonant 4-wave mixing in Kr cell

To be tested and installed to U-line in 2012

- Ionization test at RIKEN-RAL
 - Improved laser system
 - stable, more freedom of adjustments
 - New beam line controls
 - Heater system refurbished
 - Taking data JUST NOW!
 - Beam time : March 6-8

Summary

- A new muon g-2/EDM experiment at J-PARC:
 - Off magic momentum + compact g-2 ring
 - Complementary to FNAL g-2
 - Start in 2016
- Ultra-slow muons
 - The key technology to realize required beam
 - TRIUMF S1249 studies Mu emitting materials at room temp.
 - Ionization test with improved laser system is in progress at RIKEN-RAL.
 - Intense Ly- α laser being developed in close collaboration with U-line developers.

back up slides

BNL, FNAL, and J-PARC

	BNL-E821	FNAL-E989	This Experiment
Muon momentum	$3.09~{ m GeV}/c$		$0.3~{ m GeV}/c$
γ	29.3		3
Polarization	100%		>90%
Storage field	B = 1.45 T		$B=3.0~{ m T}$
Focusing field	Electric Quad.		very-weak magnetic
Cyclotron period	149 ns		$7.4 \mathrm{~ns}$
Anomalous spin precession period	$4.37~\mu m s$		$2.11~\mu{ m s}$
# of detected e^+	5.0×10^{9}	1.8×10^{11}	1.5×10^{12}
# of detected e^-	$3.6{ imes}10^9$	—	-
Statistical precision	0.46 ppm	0.1 ppm	0.1 ppm

Projected schedule

Now

Relevant parameters of muon beam characteristics and decay properties

Section	Parameter	Value
Muon Beam	Mass	$105.658 \ 367(4) \ MeV/c^2$
	Momentum	300.0 MeV/c
	Energy	318.1 MeV
	β	0.943
	γ	3.011
	Dilated life time	$6.615 \ \mu s$
	Radius of Cyclotron motion	33.33 mm
	Cyclotron period $2\pi/\omega_c$	7.387 ns
	Anomalous spin precession period $2\pi/\omega_a$	2111 ns
		285.7 turns
	Polarization	>0.9
	Intensity	$1 \times 10^6/s$ ($4 \times 10^4/spill$)
	Pulse repetition rate	25 Hz
Positron	Mass	$0.510 \ 998 \ 910(13) \ {\rm MeV/c^2}$
	Maximum energy (muon rest frame)	52.83 MeV
	Maximum energy (laboratory frame)	309.0 MeV
	Optimum energy threshold E_{lab}^{th}	200 MeV
	Fraction C^{th} at $E^{th}_{lab} = 200 \text{ MeV}$	0.13
	Effective A at $E_{lab}^{th} = 200 \text{ MeV}$	0.46
	Maximum emission angle at $E_{lab}^{th} = 200 \text{ MeV}$	250 mrad (14.3 deg)
	Minimum p_{xy} at $E_{lab}^{th} = 200 \text{ MeV}$	194 MeV/c

BNL E821 Experimental Technique

J-PARC Facility (KEK/JAEA)

Neutrino Beam To Kamioka

Main Ring

Bird's eye photo in Feb. 2008

Hadron Hall 35

GeV

chrotron

Injection, storage, and positron detection

The muon storage magnet

Standard model prediction

D. Nomura (PhiPsi11)

QED contribution	11 658 471.808 (0.015) $\times 10^{-10}$	Kinoshita & Nio, Aoyama et al			
EW contribution	15.4 (0.2) ×10 ⁻¹⁰	Czarnecki et al			
Hadronic contribu	Hadronic contribution				
LO hadronic	694.9 (4.3) ×10 ⁻¹⁰	HLMNT11			
NLO hadronic	-9.8 (0.1) $\times 10^{-10}$	HLMNT11			
light-by-light	10.5 (2.6) ×10 ⁻¹⁰	Prades, de Rafael & Vainshtein			
Theory TOTAL 11 659 182.8 (4.9) ×10 ⁻¹⁰					
Experiment	11 659 208.9 (6.3) ×10 ⁻¹⁰	world avg			
Exp — Theory	26.1 (8.0) ×10 ⁻¹⁰	3.3 σ discrepancy			

(Numbers taken from HLMNT11, arXiv:1105.3149)

Hunting for SUSY (or other BSM) signature

g-2 measurement is complementary to LHC and cLFV

Tension with LHC Higgs implications?

 $M_h \simeq 125 \text{ GeV}, \text{ no } (g-2)_\mu$

 $M_h \simeq 119 \text{ GeV}$

21.0/22

28.8/23

52%

19%

Muon EDM Direct CPV in **Lepton Sector** CPV Required beyond KM Current Exp. Limit ~ 1e-19 Potential **Sensitivity of J-**PARC 1e-22 @ MLF

